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1 Introduction

The development of topology has been one of the most important milestones
in mathematics of the 20th century. Its roots can be traced back to Euler
and his 1736 paper on the Seven Bridges of Königsberg [4]. In this essay I
aim to present four of the most influential theorems in Euclidean topology
[16], namely the Borsuk-Ulam theorem, the Hairy Ball theorem, the Jor-
dan Curve theorem, and the Brouwer Fixed Point theorem. Firstly their
history will be mentioned, along with a discussion of their statements and
applications. Then I shall provide a wider context for the understanding of
the relationships between them, including many other theorems within the
scope of topological progress of the last century.
This essay assumes some familiarity with basic concepts within topology,
especially including homotopy theory.

2 The Borsuk-Ulam Theorem

The Borsuk-Ulam theorem was first referenced in Lyusternik and Shnirel’man
(1930). It was first proved by Borsuk in 1933, who gave Ulam credit for the
formulation of the problem in a footnote. [21, p. 25] The Borsuk-Ulam the-
orem states that for every continuous map from a 2-sphere into Euclidean
2-space, there exists a pair of antipodal points. [7, p. 133] Antipodal points
are points on spheres that are diametrically opposite, so the straight line
connecting them passes through the centre of the sphere. More formally:

Define a continuous map f: S2 → R2. Then there exist antipodal
points w and -w in S2 such that f(w) = f(−w).

The proof follows:
First we shall show that we need only concern B2, instead of S2. Define a
map g : S2 → R2 by

g(w) = f(w)− f(−w) w ∈ S2
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We want to show that g must vanish at some point of S2. We will only need
to use the following property:

g(−w) = −g(w) w ∈ S2

Consider the continuous map g : B2 → R2 defined by,

h(x, y) = g(x, y,
√

1− x2 − y2) (x, y) ∈ B2

According to this mapping, h is the result of flattening the top half of S2

onto B2. Using the aforementioned property we have,

h(−z) = −h(z) z ∈ S1

The reason we specify z ∈ S1 is that this is the unit circle, and so it the
set of points in B2 that contain antipodal points of the half-sphere. It is the
equator of the half-sphere. It is therefore sufficient to show that any map
h from B2 to R2 satisfying the previous property vanishes at some point of
B2. We can construct a proof by contradiction. Suppose that an h does not
vanish on B2. We can construct another map:

φ(z) =
h(z)

|h(z)|
|h(1)|
h(1)

z ∈ B2

defines a map with our desired properties. More specifically we have defined
a map φ : B2 → S2 that satisfies,

φ(−z) = −φ(z) z ∈ S1

φ(1) = 1

Consider the path:

α(s) = φ(e2πis) 0 ≤ s ≤ 1

We can show that its index is zero.1. We can obtain a contradiction by
showing that its index is odd.
Define a loop in B2 by,

β(s) = e2πis 0 ≤ s ≤ 1

Then α = φ(β). Since B2 is a convex subset of R2, α is homotopic (with
endpoints fixed) to the constant loop in S1 at 1. In other words, α can be
shrunk to the point 1 in S1. We can then deduce that the have the same
index, 0.

1Note that index is referred to by many authors as degree For more detailed reasoning
as to why the index is zero, see the proof of Brouwer Fixed Point theorem
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Set k : [0,1] → R such that,

φ(e2πis) = e2πik(s) 0 ≤ s ≤ 1

k(0) = 0

Then ind(α) = k(1). Since φ is an odd function:

exp[2πik(s+
1

2
)] = − exp[2πik(s)] = exp[2πi(k(s) +

1

2
))] 0 ≤ s ≤ 1

For each fixed s ∈ [0, 12 ], the number

k(s+
1

2
)− k(s)− 1

2

must be an integer. As the above number depends continuously on s and has
a discrete range, it is constant. Set this constant value equal to an integer
m, so:

k(s+
1

2
)− k(s) = m+

1

2
0 ≤ s ≤ 1

2

Then,

ind(α) = k(1) = k(1)− k(
1

2
) + k(

1

2
)− k(0),

which gives an odd integer as shown by

m+
1

2
+m+

1

2
= 2m+ 1

Thus we have obtained a contradiction, so h does vanish on B2, and the
theorem is proved. One interpretation of this theorem is that if you take a
rubber ball, deflate it, crumple it and lay it flat, then there are two points
that were antipodal on the surface of the ball that are now lying on top
of each other. Another classic interpretation of the theorem is that at any
time, there are two antipodal points on the surface of the Earth with equal
temperature and, simultaneously, the same pressure. The single dimensional
case is easier to prove. We can construct the odd function in an analogous
way. As it is both positive and negative in the domain, it follows that
the function vanishes in that domain by the Intermediate Value theorem,
and the theorem is proved. Interestingly, the Borsuk-Ulam theorem has a
combinatorial analog, that is, a combinatorical statement which is equivalent
[23]. It is called Tucker’s Lemma and this surprising link between topology
and combinatorics is part of a field called topological combinatorics. An
interesting implication of this theorem is the Ham Sandwich theorem, and
its 2 dimension counterpart, the Pancake theorem. The Ham Sandwich
theorem states [7, p. 134]:
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Let U, V, and W be 3 bounded connected open subsets of R3.
Then there is a plane in R3 that divides each of the sets into two
pieces of equal volume.

The Pancake theorem states:

Let U and V be 2 bounded connected open subsets of R2. Then
there is a straight line that divides each of U and V in half by
area.

3 The Hairy Ball Theorem

The Hairy Ball theorem is the statement that there is no continuous field
of non-zero tangent vectors on an even-dimensional n-sphere.[22]The the-
orem was first stated by Poincaré in the 19th century and was proved by
Brouwer in 1912. When tangent vectors are visualised as hairs, the state-
ment becomes ‘you can’t comb a hairy ball without creating a tuft’. In-
terestingly, the single-holed torus is the only compact, orientable surface
(2 dimensional manifold) that has a non-vanishing tangent vector field![13]
In fact, the Hairy Ball theorem can be thought of as a consequence of the
remarkable Poincaré-Hopf theorem. This shows that the sum of the indices
of a vector field on a compact, differentiable manifold over all of its (iso-
lated) zeros is independent of which vector field is considered.[7, p. 188]
Importantly, the number (which must be an integer) is equal to the Euler
characteristic of the manifold. The most applicable consequence of this to
the Hairy Ball theorem is that if you have a compact, differentiable manifold
with a non-vanishing tangent vector field, its Euler characteristic must be
zero.[27] Examples of manifolds with zero Euler charactertic are the torus,
odd dimension n-spheres, the Möbius loop, and Klein bottle. All of these
shapes have continuous non-vanishing tangent vector fields,(the latter 2 are
non-orientable surfaces, so the torus is the only orientable surface with the
desired property) which are fairly easy to imagine (apart from maybe the
case of the Klein bottle).[14].
There are many proofs of this famous theorem, which were formulated at
various points in time. Now I present a sketch of Milnor’s analytic proof
of the Hairy Ball theorem[22], as I believe that this is the easiest to follow
without a foundation in homotopy theory.
Theorem 1:

An even-dimensional sphere does not possess any continuously
differentiable field of unit tangent vectors.

The sphere Sn−1 is trivially the set of all vectors u = (u1, ...un) in Euclidean
space Rn such that the Euclidean length ||u|| = 1. A vector v(u) in Rn is
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Figure 1: A failed attempt to comb
a hairy ball [5]

Figure 2: A successful attempt to
comb a torus [6]

tangent to Sn−1 at u if the Euclidean inner (dot) product u · v(u) equals
zero. We can now show that if n − 1 is odd, it is possible to define a
differentiable field of unit tangent vectors on Sn−1, by

v(u1, ..., un) = (u2,−u1, ..., un,−un−1)

Note that

(u2,−u1, ..., un,−un−1) ·(u1, ...un) = u2u1−u1u2+ ...+unun−1−un−1un = 0

This is why the Hairy Ball theorem is specified only for even-dimensional
n-spheres; when n-1 is even, n is odd so in the above equation we would not
be left with zero.
Let A be a compact region in Rn and let x→ v(x) be a continuously differ-
entiable vector field which is defined throughout a neighbourhood of A. For
each real number t, consider

ft(x) = x+ tv(x)

which is defined for all x in A. Lemma 1:

If the parameter t is sufficiently small, then this mapping ft is
one-to-one and transforms the region A onto a nearby region
ft(A) whose volume can be expressed as a polynomial function
of t.

Proof:
Since A is compact, and the function x→ v(x) is continuously differentiable,
there exists a Lipschitz condition c such that 2

||v(x)− v(y)|| ≤ c||x− y||
2Proof of this claim can be found in [22]
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Now choose any t such that |t| < c−1. Then ft is one-to-one. This is easy
to see if we consider the implications of setting ft(x) = ft(y). It would
imply x−y = t(v(y)−v(x)), hence ||x−y|| ≤ |t|c||x−y||. We know that
|t|c < 1, this implies that x = y.
The matrix of first derivatives (also known as the Jacobian matrix) of ft
can be written as I + t[ ∂vi∂xj

], where I is the identity matrix [25]. Therefore

its determinant must be of the form 1 + tσ1(x) + ... + tnσn(x), which
is a polynomial in t with coefficients as continuous functions of x. This
determinant is strictly positive for |t| sufficiently small, as there is always
the t0 constant term. To find the volume of an n-dimensional function
f(x1, x2, ...xn), we integrate over its domain, D[15]:

˙
D
f(x1, . . . , xn) dx1 . . . dxn

Volume ft(A) =

˙
ft(A)

dV

=

˙
A
|J | dx1 . . . dxn

=

˙
A

∣∣∣∣∣∣∣
∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn

∣∣∣∣∣∣∣ dx1 . . . dxn

=

˙
A

∣∣∣∣∣∣∣


∂x1
∂x1

· · · ∂x1
∂xn

...
. . .

...
∂xn
∂x1

· · · ∂xn
∂xn

+ t


∂v1
∂x1

· · · ∂v1
∂vn

...
. . .

...
∂vn
∂x1

· · · ∂vn
∂xn


∣∣∣∣∣∣∣ dx1 . . . dxn

=

˙
A

∣∣∣∣∣∣∣
 1 · · · 0

...
. . .

...
0 · · · 1

+ t


∂v1
∂x1

· · · ∂v1
∂vn

...
. . .

...
∂vn
∂x1

· · · ∂vn
∂xn


∣∣∣∣∣∣∣ dx1 . . . dxn

Therefore

Volume ft(A) =

˙
A

1 + tσ1(x) + ...+ tnσn(x) dx1 . . . dxn

= a0 + a1t+ ...+ ant
n

with coefficients

ak =

˙
A
σk(x) dx1 . . . dxn

The lemma is now proven.
Lemma 2:

6



If the parameter t is sufficiently small, then the transformation
u → u + tv(u) maps the unit sphere in Rn onto the sphere of
radius

√
1 + t2.

This seems obvious enough, as if ||u|| = ||v(u)|| = 1, then ||u + tv(u)|| =√
1 + t2. For a more formal proof, consult [22].

We can now prove Theorem 1. As region A we take the region between
two concentric spheres, such that a ≤ ||x|| ≤ b. We extend the vector
field v throughout this region by setting v(ru) = rv(u) for a ≤ r ≤ b, so
ft(ru) = rft(u). It follows that the mapping ft(x) = x+ tv(x) is defined
throughout the region A, and maps the sphere of radius r onto the sphere
of radius r

√
1 + t2, if t is sufficiently small. This is because we now have

the radius as
√
r2 + r2t2 instead of

√
1 + t2. Hence ft(x) maps A onto the

region between spheres of radius a
√

1 + t2 and b
√

1 + t2. Since the volume
of an (n− 1)-sphere is proportional to rn[20],

Volume ft(A) = (
√

(1 + t2))n Volume(A)

Thus, if n is odd, this volume is not a polynomial function of t. Comparing
this with Lemma 1, we have a contradiction, and Theorem 1 is proved. The-
orem 1 is very similar, but not identical to the statement of the Hairy Ball
theorem. The proof that it is implied used the Weierstrass Approximation
theorem and is very short. Again, it can be found in [22].

4 The Jordan Curve theorem

The Jordan Curve theorem is the statement that any continuous loop in
the plane (that is non self-intersecting) divides the plane into two regions:
an inside and an outside. This statement is intuitively true, it is obvious
to any child that you have to cross a line to get from the outside to the
inside of the circle. In fact, the very words ‘inside’ and ‘outside’ imply
some sort of disconnection. Despite the obvious nature of the statement,
it is difficult to prove. This may not become such a surprise when one
considers that this must hold true for any Jordan curve. It is not hard to
imagine that the theorem may be difficult to prove in the case of nowhere-
differentiable curves such as fractal curves (for example the Koch Snowflake
or the Osgood curve). Despite the The Jordan Curve theorem being widely
known, many professional mathematicians have not read a proof of it.[30]
Historically, there seems to be some uncertainty about the origin of the first
valid proof. The theorem was first stated by Camille Jordan in 1893 in
his book Cours d’Analyse[12]. His proof was subsequently widely criticised,
and most authors cite the first correct proof to be due to O. Velben in
1905. Recently, there has been controversy as to the validity of Jordan’s
proof. Thomas Hales argues that Jordan’s proof is essentially correct, and
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quotes Michael Reeken: “Jordan’s proof is essentially correct... Jordan’s
proof does not present the details in a satisfactory way. But the idea is
right and with some polishing the proof would be impeccable.”[9] Here is
the formal statement of the theorem:
A Jordan Curve in R2 is the image of a one-to-one continuous mapping γ
of S1 into R2, denoted by Γ. The mapping is a homeomorphism onto its
image,

Γ = γ(S1)

The Jordan Curve theorem states that R2\Γ is disconnected and consists of
two components. Alternatively it states that R2\Γ has precisely two con-
nected components (i.e. both components are they themselves connected),
which is an equivalent statement. Here is a diagram illustrating the theorem:

Inside

Outside

γ

Due to the length of the proof required, I shall not provide it here. I point
the reader to [30] for a rigorous proof of the statement.

5 The Brouwer Fixed Point Theorem

The Brouwer Fixed Point theorem is a well known fixed point theorem in
topology. It was first proved in 1910 by Hadamard and Brouwer, and has
seen many applications since. In economics it played a vital role in the work
that gained Kenneth Arrow and Gérard Debreu the 1950 Nobel prize. It
has even has applications in game theory, where John Nash used it to prove
that there is a winning strategy for white in the game of Hex. In its most
general form, it states:[3]

Given that a set K ⊂ Rn is compact and convex, and that a
function f : K → K is continuous, then there exists some c ∈ K
such that f(c) = c.

This means that there is some fixed point c that is left unchanged by the
map. One way to illustrate this is that if you take a map of the world and
lay it out on a table, there will always be a “you are here” point on the
map. Another way of visualising it is to imagine stirring a drink in a glass.
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When the liquid comes to rest, there will always be a point in the liquid that
ends up in the same place that it started. The following examples show the
importance of the pre-conditions on K; that K is compact (thus closed and
bounded) and convex.

Boundedness:

Take

f(x) = x− 1

which is a map from R onto itself. R is convex and closed, but unbounded.
No point is mapped to itself, which is evident as the line is parallel to
f(x) = x. Therefore, we must specify that functions are bounded for the
Brouwer Fixed Point theorem.

Closedness:

Take

f(x) = x2

which is a continuous function from the open interval (0, 1) is to itself. (0, 1)
is convex and bounded, but not closed. It also does not intersect f(x) = x
in the domain, so no point is mapped to itself. Therefore, we must specify
that functions are closed.

Convexness:

Convexness is not strictly necessary for Brouwer’s Fixed Point theorem as it
holds for domains which are homeomorphic to the unit ball Bn. Therefore
the domain must be simply connected, but is not necessarily convex. For
this reason, the theorem does not hold for domains with holes, as they
aren’t simply connected. If you imagine a circular racetrack, it is obviously
not simply connected as it is made from a larger circle with a smaller one
removed. A car on the racetrack can always move forward around the track,
so continuous map can be defined without any fixed points. If you shrunk
the radius of the removed circle, eventually the racetrack would become B2

and the centre would be a fixed point. A generalisation of Brouwer’s Fixed
Point theorem for ‘hole-less’ domains follows from the Lefschetz Fixed Point
theorem, which is another fixed point theorem that generalises Brouwer’s
theorem.

Proving a special case

Any map B2 → B2 has a fixed point.
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We shall construct a proof by contradiction. For each z ∈ B2, let g(z) be
the point of S1 at which the ray from f(z) passing through z leaves B2.
Then g is a continuous map from B2 to S1. This is intuitive but proof can
be found elsewhere [7, p.223]. Clearly g(z) = z if z ∈ S1.

g(x)

z

f(x)

Lemma 1:

Let f be a map from B2 to S1 that satisfies f(1) = 1. Then the
loop α, defined by

α(s) = f(e2πis) 0 ≤ s ≤ 1

has index zero:
ind(α) = 0

Before I proceed with the proof, I shall state the following without proof,
which can be found here [7, p. 122].

Let Y be a convex subset of Rn, let y0, y1 ∈Y, and let f be a map
from Y to X. If α and β are paths from y0 to y1, then f ◦ α is
homotopic to f ◦ β with endpoints fixed.

Proof: Define a loop β in B2 by

β(s) = e2πis 0 ≤ s ≤ 1

Then α = f◦β. SinceB2 is convex, the above shows that α is homotopic with
endpoints fixed to the constant loop in S1 at 1. Since they are homotopic,
they have the same index. The constant loop makes no turns around the
circle, so its index is 0, as is α’s. ind(α)=0.
Lemma 2:

There is no map of B2 onto S1 such that f(z) = z for all z ∈ S1.
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Proof:
Assume the map, f, exists. Then the loop s→ e2πis, 0 ≤ s ≤ 1, should have
index zero, by lemma 1. But the loop winds around the circle exactly once,
and so has index 13. As we have obtained a contradiction, the lemma is
proved.
Now back to our original proof. Since g(z) = z if z ∈ S1, we obtain a
contradiction to lemma 2, and this special case of the Brouwer Fixed Point
theorem is proved.

6 Equations in Context

So far I have presented a few of the most well known theorems in Euclidean
topology. This still begs the question: how are they all connected? To
gain a bigger picture , I have constructed a map using various sources. An
arrow from one theorem to another means that the latter is implied by the
former, or a direct proof of the latter can be constructed by the former. The
motivation behind this map may be unclear as, in formal logic, any true
statement implies any other [7, p. 167]. Despite this, it can still be useful to
create maps of this kind (showing direct implications), as can be seen in [23]
and [29]. The purpose is twofold: superficially it shows which statements
can be deduced directly from which others, but its primary objective is to
give a sense of connection between separate ideas. Starred theorems are
not mentioned in this essay, and the reader may wish to consult the sources
provided. The diagram in question can be found on the next page.

7 Conclusion

I have now presented some of the key theorems in Euclidean topology. Hope-
fully, if nothing else, this essay has clearly demonstrated the interlinked and
collaborative nature of mathematical progress. All of the theorems men-
tioned were built upon pre-existing ideas developed throughout the careers
of the mathematicians before them. For example, many of the concepts
involved in this essay were born Poincaré’s 1895 paper Analysis Situs, and
have been developed over the last century. I shall end by quoting Newton:
“If I have seen further than others, it is by standing upon the shoulders of
giants”.

3Note that in this situation, the index represents the number of full turns the loop
makes around the circle.
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Schoenflies Theorem* Lefschetz–Hopf Theorem* Poincaré-Hopf

Jordan Curve Theorem Lefschetz Fixed Point Theorem Hairy Ball Theorem

KMM Lemma* Brouwer’s Fixed Point Theorem Sperner’s Lemma*

LSB Theorem* Borsuk-Ulam Theorem Fan’s N+1 lemma*

Ham Sandwich Theorem Schauder Fixed Point Theorem* Tucker’s Lemma

[17, p. 18]

[24]

[2] [10]
[8]

[18, p. 2]

[1, p. 10][19] [11]

[23] [23]

[28] [23][26]

[23][23]

[23] [23][31][7, p.134]
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