Euler’s Identity

In my school, there is a tree with the inscription ™ =—1.

I, of course, recognised this as Euler’s identity. | had read about it before, and | knew how it’s
often viewed as “The Most Beautiful Theorem in Mathematics” because it brings together three
really powerful constants: e, i and ©. However, it was unclear to me how these three could
possibly be linked in such an identity as Euler’s, so | decided to investigate its origin.

| began with Maclaurin Expansions, which express a polynomial function in terms of a sum of

terms based off of its derivatives.

To work towards a general formula, | started by defining any polynomial in terms of a and x.
Let f(x) = aqytax+a,x® +ax> +ax+ ..

£0)=aq,

| then took the first derivative of the polynomial above, to get:

f=a, +2a,x +3ax* +4a,x3 + 5a.xt + .

= f1(0) = a,

Next, | took the second derivative:

f"=2a,+3(2)ax +4(3)a,x* + 5(4)agx® + ...

L f"(0) = 2a,



| noticed that:
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Finally, | took the third derivative:
S"=312)a; +4(3)(2)a,x + 5(4)(3)asx? + ...
S f0) = 3(2)ay

Similarly, | noticed that:

go= SO _ 10
3T B3Om 3

This led me to the general formula:
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To work towards Euler’s identity, | studied the Maclaurin Expansion of e.
In Maths, e is a famous constant, and irrational number, approximately 2.71828.
e has the unique property such that it is the only function for which the n'" derivative of e* will

always be ¢, i.e. f(x) =f(x).

Therefore, | worked out the Maclaurin expansion of e by:
Let f(x) = €*

fO)=e* =1

f) = e

S 0)=€e" =1

o =e

S fM0)=¢0 =

Srw=e > O)=e =1

Next, | looked at the Maclaurin expansions for the trigonometric functions sin(x) and cos(x),

whose graphs are shown below.
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Let f(x) = sin(x)
f(0)=s5in(0)=0

| know that the first derivative of sin(x)is cos(x), and | wanted to understand why, so |
observed the function sin(x) first. | noticed at the points where the curve crosses the x-axis,
the gradient is at its steepest, either in the negative or positive direction. | also noticed that in
the peaks and troughs of sin(x), the gradient of the curve is 0.
Therefore, f(x) =0 when f(x) is at its maximum points and minimum points, and f'(x) will
have its maximum and minimum points where f(x) =0.
When | plotted it, the curve that | got looked very much like cos(x), and therefore the
derivative of sin(x) is cos(x).
f(x)=cos(x) 7. f(0)=1
Jr(x) ==sin(x) " f"(0)=0
f"(x) =—cos(x) ..f"0)=—1
) =sin(x) . f7(0)=0
From this, | noticed a recurring pattern: [0,1,0,— 1] and so on.
This is clearly because of the periodic properties of sin(x), where it repeats exactly every 2n
degrees.
Using this, | found that:
sin(x) = 0+x+0(5) — (£)+0(2) + () — ...
| then generalised and simplified this to get my final equation:
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By following the same process, | found that cos(x) had the same recurring pattern of results
from the n™ derivative as sin(x), just starting at a different point: [1,0,— 1,0]and so on. This is
because cos(x) also has periodic properties, however, it is shifted © degrees away from sin(x)
so the two graphs are offset. It follows that the recurring sequence of cos(x) would start
halfway through the sequence for sin(x).
Therefore, the final equation that | reached for cos(x) was:
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| then used these three derived formulae to work forwards, so | have stated them again here.
1L oe=l+x+S+L+84

| noticed that this expansion contains all terms of x, and all of the terms are positive.

i —y— X 4 X X (e
2. sin(x) =x =3+ 57Tt

This expansion contains only the odd powers of x, and there are oscillating signs.

— o268 (@)
3. cos)=1-5+y-"a s 1o

This expansion contains only the even powers of x, and there are again oscillating signs.
Next, | took equation 1, the expansion of ¢, and | substituted ix for x.
i is an imaginary number which represents V= 1.

To do this | had to look at the values of i to the n*" power, as follows.

o | =]
o =1
o =
o =1

Much like sin(x)and cos(x), there seems to be a recurring pattern of results. This is very useful
for infinite series because it allows us to generalise.
When | substituted e for ¢*, | got the following result:

X — X2 X x*
et =1+ix L oiftat..



When the expansion of e*is factorised, as shown above, the two parts resemble equations 2
and 3: the expansions of sin(x)and cos(x).

e = cos(x) + i sin(x)

For my next step, | tried to substitute © for x.
e’™ = cos(n) + i - sin(m)
From studying the trigonometric graphs of sin(x)and cos(x), shown again below, | found the
following values:
o cos(m)=1
o sin(m)=0

i-sin(x)=0
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Therefore, | could rewrite the above equation as:
emr=—1+0
er =1

This is Euler’s identity, and hence my investigation is complete.



