
Euler’s Identity  

In my school, there is a tree with the inscription .−eiπ = 1   

  

I, of course, recognised this as Euler’s identity. I had read about it before, and I knew how it’s 

often viewed as “The Most Beautiful Theorem in Mathematics” because it brings together three 

really powerful constants: ,  and . ​However, it was unclear to me how these three coulde i π  

possibly be linked in such an identity as Euler’s, so I decided to investigate its origin.  

I began with Maclaurin Expansions, which express a polynomial function in terms of a sum of 

terms based off of its derivatives.  

 

To work towards a general formula, I started by defining any polynomial in terms of  and .a x  

Let (x) a x x x x ..f =  0 + a1 + a2
2 + a3

3 + a4
4 + .  

(0)f = a0  

I then took the first derivative of the polynomial above, to get:

a x a x a x a x ..f ′ = a1 + 2 2 + 3 3
2 + 4 4

3 + 5 5
4 + .  

∴ (0)f ′ = a1  

Next, I took the second derivative: 

a (2)a x (3)a x (4)a x ..f ′′ = 2 2 + 3 3 + 4 4
2 + 5 5

3 + .  

∴ (0) a  f ′′ = 2 2   



I noticed that: 

a2 = f (0)′′
(2)(1) = 2!

f (0)′′  

Finally, I took the third derivative: 

(2)a (3)(2)a x (4)(3)a x ..f ′′′ = 3 3 + 4 4 + 5 5
2 + .  

∴ (0) (2)af ′′′ = 3 3  

Similarly, I noticed that: 

a3 = f (0)′′′
(3)(2)(1) =  3!

f (0)′′′  

This led me to the general formula: 

(x) (0) (0)x .. ..f = f + f ′ + 2!
f (0)x′′ 2

+ 3!
f (0)x′′′ 3

+ . + r!
f (0)xr r

+ .  

 

To work towards Euler’s identity, I studied the Maclaurin Expansion of .e  

In Maths,​  is a famous constant, and irrational number, approximately 2.71828.e  

 has the unique property such that it is the only function for which the n​th​ derivative of wille ex  

always be , i.e. .ex (x) (x)f  r = f  

 

Therefore, I worked out the Maclaurin expansion of by:e  

et f (x)L = ex  

(0)f = e0 = 1  

(x)f ′ = ex  

∴ (0)f ′ = e0 = 1  

(x)f ′′ = ex  

∴ (0)f ′′ = e0 = 1  

(x)  f (0)f  r = ex ⇒   r = e0 = 1  

 

∴ ..e ≡ 1 + x + 2!
x2 + 3!

x3 + 4!
x4 + .  

 

Next, I looked at the Maclaurin expansions for the trigonometric functions  and ,in(x)s os(x)c  

whose graphs are shown below. 



 

et f (x) in(x)L = s  

(0) in(0)f = s = 0  

 

I know that the first derivative of is , and I wanted to understand why, so Iin(x)s os(x)c  

observed the function  first. I noticed at the points where the curve crosses the x-axis,in(x)s  

the gradient is at its steepest, either in the negative or positive direction. I also noticed that in 

the peaks and troughs of , the gradient of the curve is 0.in(x)s  

Therefore,  when  is at its maximum points and minimum points, and  will(x)f ′ = 0 (x)f (x)f ′  

have its maximum and minimum points where .(x)f = 0  

When I plotted it, the curve that I got looked very much like , and therefore theos(x)c  

derivative of  is .in(x)s os(x)c  

     ∴ (x) os(x)f ′ = c (0)f ′ = 1  

     ∴(x) − in(x)f ′′ = s (0)f ′′ = 0  

     ∴(x) − os(x)f ′′′ = c (0) −f ′′′ = 1  

     ∴(x) in(x)f  iv = s (0)f  iv = 0  

From this, I noticed a recurring pattern:  and so on.0, , ,−[ 1 0 1]  

This is clearly because of the periodic​ properties of , where it repeats exactly every in(x)s π2

degrees. 

Using this, I found that: 

in(x) ( ) ) ( ) ) ..s = 0 + x + 0 2!
x2 − ( 3!

x3 + 0 4!
x4 + ( 5!

x5 − .  

I then generalised and simplified this to get my final equation: 

in(x) ..s = x − 3!
x3 + 5!

x5 − 7!
x7 + . + (2z+1)!

(−1) xz 2z−1
 



By following the same process, I found that had the same recurring pattern of resultsos(x)c  

from the n​th​ derivative as , just starting at a different point: and so on. This isin(x)s 1, ,− ,[ 0 1 0]  

because  also has periodic properties, however, it is shifted  ​degrees away from os(x)c π in(x)s  

so the two graphs are offset. It follows that the recurring sequence of  would startos(x)c  

halfway through the sequence for .in(x)s  

Therefore, the final equation that I reached for  was:os(x)c  

os(x) ..c = 1 − 2!
x2 + 4!

x4 − 6!
x6 + 8!

x8 − . + (2z)!
(−1) xz 2z

 

 

I then used these three derived formulae to work forwards, so I have stated them again here. 

1. ..e = 1 + x + 2!
x2 + 3!

x3 + 4!
x4 + .  

I noticed that this expansion contains all terms of , and all of the terms are positive.x  

2. in(x) ..s = x − 3!
x3 + 5!

x5 − 7!
x7 + . + (2z+1)!

(−1) xz 2z−1
 

This expansion contains only the odd powers of , and there are oscillating signs.x  

3. os(x) ..c = 1 − 2!
x2 + 4!

x4 − 6!
x6 + 8!

x8 − . + (2z)!
(−1) xz 2z

 

This expansion contains only the even powers of , and there are again oscillating signs.x  

Next, I took equation 1, the expansion of , and I substituted  for .ex xi x  

 is an imaginary number which represents i .√− 1  

To do this I had to look at the values of  to the n​th​ power, as follows.i  

● i1 = i  

● −i2 = 1  

● −i3 = i  

● i4 = 1  

Much like and , there seems to be a recurring pattern of results. This is very usefulin(x)s os(x)c  

for infinite series because it allows us to generalise. 

When I substituted for , I got the following result:eix ex  

1 x ..eix =  + i − 2!
x2 − i 3!

x3 + 4!
x4 + .  

i  eix = 1 ..[ − 2!
x2 + 4!

x4 − . ] +  x ..[ − 3!
x3 + 5!

x5 − . ]  



When the expansion of is factorised, as shown above, the two parts resemble equations 2ex  

and 3: the expansions of and .in(x)s os(x)c  

∴ os(x) in(x)eix = c + i · s  

 

For my next step, I tried to substitute  for .π x  

os(π) in(π)eiπ = c + i · s  

From studying the trigonometric graphs of and , shown again below, I found thein(x)s os(x)c  

following values: 

● os(π) −c = 1  

● in(π)s = 0  

∴ in(x)i · s = 0  

 

Therefore, I could rewrite the above equation as: 

−eiπ = 1 + 0  

e −iπ = 1 
 

This is Euler’s identity, and hence my investigation is complete. 


