
Tessellation, Penrose Tilings and Infinity  
Notes on honeycomb and M.C. Escher  
 
“Triangles are my favourite shape, three points where two lines meet … let’s tessellate” 

- Alt-J 
Have you ever noticed patterns in the brickwork of the pavement as you’re walking into 
town? Or in the wallpaper at your grandparents’ house? Or in the quilt on your bed? Most 
people have at some point in their lives noticed the beauty of the patterns in the world 
around them. However, many don’t realise that this beauty is in fact mathematics.   
 
You will often hear mathematicians say that maths is beautiful. At first, it can just seem like 
they’re referring to the perfection of a nice proof when it comes to its conclusion. But it is 
much more than this – ask a mathematician which part of maths they find the most 
intrinsically beautiful and you’ll receive a wide variety of answers, each very individual to 
the person. For me, this beauty is found in tessellation.  From my favourite book as a child 
Penrose the Mathematical Cat to the video series Doodling in Math Class by Vihart in 
teenage years, the beauty in this form of mathematics has always fascinated me.  
 
Tessellations can be found everywhere: in the periodic arrangement of hexagons in 
honeycomb, stained-glass windows and mosaic tilings, and the striking artwork of M.C. 
Escher. They have even made their name in popular culture, from tiling puzzles and the 
tangram to the videogame Tetris, where the aim is to create tessellations as best you can 
from a set of falling tetrominoes.  
 
A tessellation is defined a repeating pattern made of one or more shapes, without the 
formation of gaps or overlaps. As an art form, tessellation is particularly rich in 
mathematics, with ties to geometry, topology and group theory. 
 
The simplest types of tessellation are referred 
to as regular tessellations. These are 
monohedral tilings (where every single tile is 
congruent) of regular polygons (all having 
equal sides and angles). From the fact that  
angles around a point must sum to 360 degrees, it is easy to infer mathematically that there 

are only three types of regular polygons which can 
make up these tessellations – equilateral triangles, 
squares, and regular hexagons. This is because these 
are the only regular polygons with internal angles that 
are a factor of 360 degrees.  
 
Other common types of pattern are semi-regular 
tessellations, which allow more than one type of 
regular polygon as tiles, or monohedral tessellations, 
which only use congruent tiles.  
 

Within nature, tessellations tend to be regular or semi-regular. 
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Honeycomb has such a regular tessellation to allow for the most efficient construction, 
allowing multiple bees to build different cells at one time. This is because each cell is exactly 
the same. However, this still leaves the three options for the shape – a square, triangle, or 
hexagonal cell. In 1999, the mathematician Thomas Hales proved the ‘honeycomb 
conjecture’, which demonstrated that the hexagon provided the least total perimeter out of 
these three options. This can be easily demonstrated for hexagons and triangles.  
 
 
 
 
 
Take the side length of each small triangle above to be one unit. The perimeter of both of 
the shapes is exactly the same – each is made up of six edges of the small triangles and is 
therefore six units in length. However, you can clearly see that the hexagonal shape 
provides a larger area, fitting six triangles as opposed to four. It’s more difficult to see this 
with squares in comparison to hexagons, however again if you construct a square with the 
same perimeter, the hexagon again has a greater total area as it is rounder in shape.  
Evolutionarily, this provides an advantage to the bees as less beeswax is needed overall for 
the same area of construction.  
 
At a molecular level, tessellation can also be found, especially within crystal structures. 
Single molecular units can act as tiles and combine to build complex three-dimensional 
molecular tessellations; properties of these tessellations such as their geometric symmetry 
can help scientists understand self-organised systems in biology and nanotechnology – 
especially as more and more complex tessellations are found.  
 
As of yet, all the tessellations we have looked at have been periodic; that is, a tiling that has 
a repeating pattern within itself. If you walked along a surface with this kind of tiling, you 
would be able to easily predict what comes next.  
 
However, there is such a thing as an aperiodic tiling – one which uses a small set of tile 
shapes that cannot form a repeating pattern, no matter how large the area. If you walked 
along an infinite surface with this kind of tiling, no matter how long you walked for, you 
would never be able to predict what comes next. 
 
In 1967, the British mathematician Roger Penrose was interested in crafting this infinite 
variation. In order to achieve this, he couldn’t use any tiles with two, three, four, or six axes 
of symmetry; on an infinite plane this symmetry would ultimately result in periodic patterns. 
So, Penrose used five-axis symmetry, or the pentagon - a shape which was believed to 
always leave gaps in the tiling of a plane.  
 



Penrose made several versions of 
these aperiodic tile sets, the 

first of which uses 
pentagons and three other 
shapes (a “star”, “diamond” 
and “boat”) and a set of rules to ensure 
that all tilings are non-periodic. The 

second involves just two shapes – the 
‘dart’ and the ‘kite’, with the matching rule 
that the placement of the two symmetrical 
arcs on their surfaces has to line up, creating 

continuous curves. These Penrose tilings, despite never having 
translational symmetry (repeated sections), may have both 
reflectional symmetry and fivefold rotational symmetry. This is 
known as so-called “forbidden symmetry”, because it goes against 
the unconscious association humans have between repetition and symmetry.  
 
In the second type of Penrose tiling, the ratio of the area of the kite to that of the dart is the 
golden ratio. The ratio of the longer side of the kite to its shorter side is also the golden 
ratio. And, finally, in an infinite plane, the ratio of the number of darts to kites is also the 
golden ratio. This ratio is unavoidable and is one of the mathematical phenomena that 
emerges everywhere – even where you would least expect it.  
 
Penrose could not have known when he was formulating these tilings that his discovery 
would have massive significance in materials science. In 1982, Shechtman discovered an 
alloy with a crystalline structure which didn’t seem to reflect the standard crystallographic 
symmetries. It was aperiodic – in fact the atoms seemed to be arranged in the same 
pentagons, kites and darts which Penrose had used in his tilings. For 80 years, the definition 
of a crystal had been “ordered and periodic”, but this 
discovery led to the redefinition of the word entirely.  
 
The unpredictable nature of a Penrose floor makes it 
appealing for architectural use– for example, in 
paving the entrance to the Andrew Wiles Building at 
the University of Oxford.  I was fortunate enough to 
visit this myself recently and I would definitely 
recommend it. 
 
Mathematicians and non-mathematicians alike have acknowledged the beauty of 
tessellations and tilings with an almost (and in some cases literal) religious fascination. In 
1619, Johannes Kepler wrote Harmonices Mundi, which discussed harmony and congruence 
in physical phenomena; within the book was an early documented study of tessellation. 
Kepler reasoned that the relationships he had found gave evidence for God’s design in the 
world.  
 
He was not the first to make a connection between the ‘harmony’ of geometrical forms and 
religion – Islamic art had been characterised by its extensive use of geometric and abstract 
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floral patterns for years, especially in religious art forms. In some interpretations of Islam, 
there is a ban on depiction of animate beings due to the prohibition of idolatry, which led to 
the focus on expressing the beauty and awe Muslims found in Allah in other ways. In turn, 
this contributed to the flourishing of mathematical and geometrical tiling within Islamic art.  
 
Mathematics and tessellations have also emerged in Western art forms, most notably in the 
artwork of M.C. Escher. He was heavily influenced by the tessellations present in Islamic 
tilings, most notably via his visit to the Alhambra in 1922, where the intricate mosaics 
triggered his interest in the mathematics of tessellation. What is especially remarkable 
about the Alhambra tiles is that they contain nearly all, if not all, of the seventeen different 
possible plane symmetry groups.   
 

 
 
 
 
He called his works on tessellation Regular Divisions of 
the Plane, which featured tessellations of reptiles, birds, 
fish, and other figures in complex interlocking designs. 
He also combined tessellation with two- and three-
dimensional images, such as in the famous print 
Reptiles. 
 
“The flat shape irritates me—I feel like telling my objects, you 
are too fictitious, lying there next to each other static and 
frozen: do something, come off the paper and show me what 
you are capable of!”                             
              – M.C. Escher 
 
Although Escher didn’t have mathematical training – his understanding of maths was mostly 
intuitive - he carefully studied the seventeen plane symmetry groups, and then developed a 
mathematical notation for the symmetry expressed in his own artwork. Later on in life, 
Escher also became interested by other mathematical concepts – such as infinity, non-
Euclidean geometry and impossible objects. For example, inspired by H.S.M. Coxeter, he 
based his engravings Circle Limit I-IV on the tessellation of a hyperbolic plane. The infinitely 
regular repetitions of this tessellation, growing rapidly smaller and smaller, allowed him to 
represent the concept of infinity on a two-dimensional plane.  

 
 
 
 
 
 
 

Tiling at the Alhambra Escher’s study of the tiling Symmetry System X(e), Escher 
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Escher also used other mathematical concepts to 
illustrate the idea of infinity in his art – such as 
the striking Möbius strip with ants walking 
around and around in perpetual motion. At first 
the ants always appear to be on opposite ‘sides’ 
of the strip – but the strip only has one surface; 
they crawl after each other and travel on both 

so-called ‘sides’ without crossing the edge of the surface. Therefore, it must be a one-sided 
shape! The ants could march on forever into infinity. I would definitely recommend Vihart’s 
videos on the Möbius strip if you want to find out more. 
 
In early 1960, another representation of infinity 
emerges in Escher’s art: perpetual motion. Along with 
impossible objects, the images of Waterfall and 
Ascending and Descending illustrate a fascination with 
visual paradox and the concept of infinity – both the 
water and the monks will continue indefinitely in an 
impossible loop constructed by his imagination. 
 
Interestingly, Roger Penrose (of the Penrose tiling) took 
a great deal of inspiration from Escher’s Relativity and 
its impossible perspectives, which led to the formulation 
of the Penrose triangle and of the Penrose stairs, with 
help from his father. In turn, Escher was influenced by 
Penrose’s impossible objects which he incorporated into 
Waterfall and Ascending and Descending.  
 
Unfortunately, Escher never got a chance to demonstrate his artistic take on the 
extraordinary tessellation of Penrose tilings – he passed away before their invention. 
Nonetheless, there is beauty in how their work sits side by side, bringing to mind the very 
tessellations that Escher and Penrose themselves explored. 
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