
What the bleat has texting got to do with         
thermodynamics? 
A brief introduction to information theory 

1 - Information 
Consider a familiar situation - you and your friend want to talk about the adorable sheep that                 
live in the fields between your houses. Tragically, however, it’s getting late and they need to                
go back to their house. Not intending to let this end to discussion, you agree that you’ll send                  
messages by flashing lights out of your windows. Both of you have an LED light (which is                 
coloured white), and a filament bulb (which is an orangey colour). But, converting messages              
into flashes of light and back again is pretty long winded and tedious, and the two of you                  
want to find a way of encoding the messages that is as efficient as possible. But, how? 
 
Imagine that, to start off with, you just want to tell your friend what noises the sheep is                  
making. Let’s consider two examples, one when the sheep is excited, and one when it’s               
calm. 
 

1) Excited: ​BAABABABBAABBABABABAAAABABAA 
2) Calm:   BAAAAAAAAAAAAAAAABAAAAAAAAAA 

 
Importantly, when the sheep is excited and their baas are short and sharp, the message is                
split fairly evenly into Bs and As. But, when they’re nice and calm, and the baas are longer,                  
the message has far more As than Bs. In fact, when they’re calm, the message is almost                 
entirely just the letter A.  
 
But, if you imagine actually sending those messages, doesn’t the second one seem a bit               
silly? You’re sending letter after letter, but the only time anything ​interesting happens is              
when a B appears. As an even clearer example, imagine if you sent a message where only 1                  
out of every 10,000 letters was a B - your friend would be bored out of their mind! In the                    
most extreme situation, where every letter was guaranteed to be an A, then your message               
wouldn’t be telling them ​anything​. 
 
The reason why I bring this up is to point out the fact that the amount of “content” each letter                    
communicates intuitively seems to vary. But, does this actually mean anything in practise?             
Could we try and spend less effort sending letters which don’t communicate much, or              
anything like that? Well, it seems like the answer is no. You’ve got two colours of light, so the                   
best you can do is just pick one colour for each type of letter (A or B), but then you end up                      
with one flash per letter in each case, so there’s no difference! Admittedly, you could always                
try and send them using a different way of coding the messages all together, but for the sake                  
of simplicity I’ll avoid that. Anyway, as it turns out the reason we don’t see a difference in this                   
case is because we’re using ​discrete data, where the values have to fit into distinct               
categories. This means that intermediate values have to be rounded, so previously different             



numbers can end up looking the same. Fortunately, this is easy to deal with in situations like                 
this, by simply adding more possible values of data. That way, close numbers are less likely                
to be rounded to the same value. 
 
Let’s look at an extreme example. Instead of sending messages made up mostly of Bs and                
As, this time you tell your friend you’ll use different letters to communicate subtle differences               
in the baas. We’ll again consider two cases, one where the sheep are all starting and                
stopping a lot, and one where they make very, very long baas (only 1 in every couple                 
hundred characters isn’t an A). 
 

1) Rapid baas: FCSAlTOPABJVHTPBVAZTZASJBAAW 
2) Long baas: NAAAAAAAAAAAAAAAAAAAAAA 

 
In case one, you can’t distinguish between the letters, so you might just give them codes of                 
the same length. In this case, they’d have to be five flashes each (each flash doubles the                 
number of possible characters you can use, and the smallest power of 2 greater than 26 is                 

). But, in the second case, if you let A be just a green flash, and the rest of the                    
characters a 5 flash code starting with a blue flash, then on average you only need a little                  
over flash per character. That’s a huge difference! So, we’ve (sort of) confirmed that this                
“content” idea might actually mean something practical. The next thing to do then is to make                
it more rigorous.  
 
Firstly, we need to define a “source” of information, which we’ll always represent with the               
letter . A source is anything that, when checked, randomly returns one of a discrete set of                 
“outputs”. These possible outputs will be written as . Importantly, the           
chance of getting any particular output has to be the same every time the source is checked,                 
and the probability of getting some output will be written as ​. Lastly, the number of                 
outputs for a given source will usually be called n. In the earlier example, the source was the                  
sheep, and the outputs were the letters in your message. Obviously in real life the chance a                 
sheep makes any given noise is not a constant value at every point in time, but you can                  
roughly approximate it like that.  
 
Then, we need to define our “content” or “information” property for the outputs of sources.               
Let’s list some properties we’d intuitively like it to have. 
 

1) It makes sense that the information you get from an output of a source doesn’t               
specifically depend on what the source or output is. That is, it doesn’t matter if it’s a                 
sheep making noise or something else. Instead, we just want the information to be              
based on the ​probability of the output. So, we’ll say that our “information” idea is a                
function that takes a probability and returns some number. More formally, we’ll define             
it as  . That is, it’s the function that maps numbers in the range 0 to 1,                
to any other set of points on the number line. 

 
2) Next, it makes sense that if an output is guaranteed to happen, you don’t learn               

anything from finding out it did. Again, we can write this as            . 
 

https://www.codecogs.com/eqnedit.php?latex=32%3D2%5E5%0
https://www.codecogs.com/eqnedit.php?latex=1%0
http://www.texrendr.com/?eqn=X%0
https://www.codecogs.com/eqnedit.php?latex=x_%7B1%7D%2Cx_%7B2%7D%2C...%2Cx_%7Bi%7D%2C...%2Cx_%7Bn%7D%0
https://www.codecogs.com/eqnedit.php?latex=x_%7Bi%7D%0
https://www.codecogs.com/eqnedit.php?latex=p_%7Bi%7D%0
https://www.codecogs.com/eqnedit.php?latex=I%0


3) More generally, the less likely an output is, the more interesting it is when it actually                
happens, and the more common it is, the less interesting it is to find out that it                 
happened. This means that    is ​monotonically decreasing​. As an equation, we       
can write this as    .  
 

4) Lastly, we want to be able to combine the information from multiple outputs. So, why               
don’t we say that the information you get from output A and B from happening, is just                 
the sum of the information you get if they happened individually, so we know that              

. But, we know that , so you can write          
the rule simpler by saying that      . 

 
Surprisingly with just those four constraints, you can actually show that⠀           ⠀​has to be one    
of a small set of functions, each of which is just a scalar multiple of all the others!  
 
Firstly, we can take derivative of the  
equation in rule 4 in respect to one 
 of the two probabilities. 
 
Then, set  .  
 
Divide by  
 
Then, by the fundamental theorem 
of calculus, 
 
Which is equal to, 
 
To ensure it follows rule 3,  
must be negative, so we can write it 
in the form 
 
As a note, different values of are commonly used, such as 2, , and 10. For the sake of                    
convenience, we’ll be exclusively using the natural log, but it can be easily converted to any                
other base by dividing by  
 
From this, we can also define the ​average information you’d expect per output for some               
source, which we’ll write as     . To do this, you just multiply the likelihood of a given            
output by the amount of information you get from it, and just add it all together. 
 
 
 

2 - Definitions 
 

https://www.codecogs.com/eqnedit.php?latex=I(p_%7BA%26B%7D)%20%3D%20I(p_%7BA%7D)%20%2B%20I(p_%7BB%7CA%7D)%0
https://www.codecogs.com/eqnedit.php?latex=p_%7BA%26B%7D%20%3D%20p_%7BA%7D%20%5Ccdot%20p_%7BB%7CA%7D%0
https://www.codecogs.com/eqnedit.php?latex=p_1%0
https://www.codecogs.com/eqnedit.php?latex=k%0
https://www.codecogs.com/eqnedit.php?latex=a%0
https://www.codecogs.com/eqnedit.php?latex=e%0


Great! We’ve taken this confusing, poorly defined idea of “information” and turned it into a               
well defined (albeit still confusing) mathematical function. But, how is this going to help you               
send messages efficiently? Well, like always, to answer this we have to make the situation               
more rigorous. 
 
Firstly, what ​exactly does encoding mean? This section is going to involve a lot of definitions,                
so sorry if it’s a little difficult to keep track of. Let’s suppose you have an information source                  

, with a set of possible outcomes       , and a set of matching probabilities       
describe how likely each outcome is.  

 
Then, you need an alphabet of characters , of length , with which the outcomes will be                 
encoded. The set of all possible “words” (which we’ll refer to as strings) you can make with                 
this alphabet is written as . A “code” is then simply any function that maps each                 
outcome in to some string in . That is, a code is any function . The subset                  
of that is mapped to by (often called the ​image of under ) will be called . Lastly,                     
for every outcome ,we’ll write the length of the string that it’s encoded by as .  
 
Simple, right?  
 
However, we’re not just dealing with ​any possible code. Instead, we’re only interested in              
prefix codes, where none of the strings in are the beginning of any others (personally, I                 
think prefix-​less makes more sense). This means that the code in question is ​uniquely              
decodable​; since you can tell unambiguously where characters start and end, you can             
always work out the original series of outputs. This limitation is largely just for convenience,               
but the actual results apply to any uniquely decodable code (and besides, common             
examples like ASCII or Unicode are prefix codes).  
 
The only thing left is to be more specific about efficiency. In this case, we’ll say that the                  
efficiency of a code depends on the expected length of string you use for each outcome. The                 
most efficient code will be any one that minimises the expected length (although there’s not               
guaranteed to only be one). The formula for the expected length is the length of each string                 
multiplied by how likely it occurs, or: 
 
 .  
 
 
Now ​we can finally find the most efficient code for any given  and !  
 
Except, we won’t. As it turns out, this is surprisingly simple, and if you’ve followed the essay                 
up to this point you can probably learn it in just a few minutes (known as Huffman Coding).                  
So, why on Earth would I pose that as the key question if I had no intention of answering it?                    
Basically, because it’s easy to ask. We’ve just gone through multiple paragraphs of             
definitions and clarifications about what situation we’re even dealing with; can you imagine if              
all of this was ​before​ the introduction?  
 
The actual key question is: what is the lower bound on the efficiency of a prefix code? 

http://www.texrendr.com/?eqn=X%0
https://www.codecogs.com/eqnedit.php?latex=T%0
https://www.codecogs.com/eqnedit.php?latex=r%0
https://www.codecogs.com/eqnedit.php?latex=T%20%5Cast%0
https://www.codecogs.com/eqnedit.php?latex=F%0
https://www.codecogs.com/eqnedit.php?latex=S%0
https://www.codecogs.com/eqnedit.php?latex=T%20%5Cast%0
https://www.codecogs.com/eqnedit.php?latex=F%3AS%20%5Crightarrow%20T%20%5Cast%0
https://www.codecogs.com/eqnedit.php?latex=T%20%5Cast%0
https://www.codecogs.com/eqnedit.php?latex=F%0
https://www.codecogs.com/eqnedit.php?latex=S%0
https://www.codecogs.com/eqnedit.php?latex=F%0
https://www.codecogs.com/eqnedit.php?latex=C%0
https://www.codecogs.com/eqnedit.php?latex=x_i%0
https://www.codecogs.com/eqnedit.php?latex=%5Cell_i%0
https://www.codecogs.com/eqnedit.php?latex=C%0
http://www.texrendr.com/?eqn=X%0
https://www.codecogs.com/eqnedit.php?latex=T%0


 
The reason why this is interesting is because it turns out the average information function we                
defined earlier,  , is exactly that! Personally, I think that this is really interesting. An             
intuitive way of thinking about it is that if the information from the outputs was greater than                 
the information of the code, then you’d have to have lost some of it, and wouldn’t be able to                   
work out the original series of outcomes.  
 
In order to prove this, there are unfortunately two other results we need to use. For space                 
reasons, I can’t include full proofs. 

3 - Kraft-McMillan and Gibbs’ inequalities 
 
The Kraft-McMillan inequality relates the minimum length of strings used in a uniquely             
decodable code to the number of outcomes that need to be encoded, and the number of                
characters available. The specific version we need can be stated as: 
 
 
For any prefix code,  
 
 
To show this, I’m going to use a type of diagram called a “tree”, and some common                 
terminology, which I’d recommend looking up if you’re not familiar with it already. 
 
 
 
 
 
 
 
 
 
 
 
 
We can represent any prefix code as an -ary tree. The strings representing each outcome               
can be found by reading down along the branches from the top node to the outcome. Figure                 
1 is an example of this, when . 
 
We can complete the tree, up to some layer , as in figure 2 (again, letting ). The                  
bottom layer has nodes in it. Similarly, each coding node has daughter nodes in the                 
bottom layer. In a prefix code, no coding node is a daughter node to any other coding node,                  
so no two coding nodes share any daughter nodes in the bottom layer either. As a result,  
 
 
 

https://www.codecogs.com/eqnedit.php?latex=r%0
https://www.codecogs.com/eqnedit.php?latex=r%3D2%0
https://www.codecogs.com/eqnedit.php?latex=L%0
https://www.codecogs.com/eqnedit.php?latex=r%3D2%0
https://www.codecogs.com/eqnedit.php?latex=r%5EL%0
https://www.codecogs.com/eqnedit.php?latex=r%5E%7BL-%5Cell_%7Bi%7D%7D%0


 
 
By dividing each side by , we get the inequality. 
 
Secondly, there’s the Gibbs’ inequality. Informally, this states that the average information            
function we defined earlier is minimised when the probabilities used to find the information              
associated with each outcome are the same as the actual probabilities of each outcome.              
More formally, for any two probability distributions and with the same number of              
possible outcomes, 
 
 
 
 
 
 
With a little algebra, this can be rearranged as, 
 
 
  
 
 
which can be shown by using the fact that          . 

4 - Shannon’s Source Coding theorem 
 
For a given uniquely decodable code, we’ll define a probability distribution  such that ​s 
 
 
 
 
Then, starting with the definition of : 
 
 
 
 
Gibbs’ inequality 
 
 
 

  
 

 
 
 

https://www.codecogs.com/eqnedit.php?latex=r%5EL%0
https://www.codecogs.com/eqnedit.php?latex=P%0
https://www.codecogs.com/eqnedit.php?latex=Q%0
https://www.codecogs.com/eqnedit.php?latex=H%0
http://www.texrendr.com/?eqn=%24%24%0


 
Kraft-McMillan inequality 
 
 
 
 
 
 
 
And, Information Theory was discovered. 
 
Personally, I think that this is ​stunning​. There are actual, tangible results you can show about                
communication and information, despite how crazy and messy it is. Of course, this relies on               
a ridiculously simplified model of information and communication, but even in this case it's              
remarkable that these results can exist.  
 
But, when it comes down to it the way I feel about certain pieces of maths doesn’t mean                  
much for its significance in the wider world. So, why does anyone care about this? Well,                
modern communications technology is built from Information theory. Computers, the internet,           
data analysis, machine learning, cryptography, and so on, all depend on it. Fields of study               
like linguistics, cognitive science, and quantum physics have picked up its key ideas. In fact,               
the word bit was first used in a publicly published paper as the unit for , and now it’s one of                     
the most common words that came from computer science. 
 
And so, we can move onto the last topic, and go over a sneaky piece of information I’ve left                   
out so far. 

5 - Thermodynamics 
 
In physics, you can generally classify descriptions of a physical system (some collection of              
physical things) into one of two categories: ones that relate to the system on a large, or                 
“regular” scale, and ones that describe it on smaller and more precise scales. For example,               
the size and shape of an object is one of these larger scale properties, while the specific                 
arrangements of the molecules inside it is a smaller scale one. The properties of physical               
systems on these different scales are usually referred to as macrostates (from the Ancient              
Greek for long, or large), and microstates (from the Ancient Greek for small).  
 
Importantly, for any given macrostate of a system (what people usually consider as its              
properties), there are many possible microstates. As an example, imagine someone           
connects two balloons of air by a small pipe. If each balloon has about mole of gas                  
molecules in it, then there are over different ways of allocating those molecules             
between the two halves of the system. That number is, frankly, incredibly big. 
 
Before we start doing maths again, there’s one last observation to make about these              
microstates. Given a physical system, we can act like every microstate is equally likely to               

https://www.codecogs.com/eqnedit.php?latex=H%0
https://www.codecogs.com/eqnedit.php?latex=1%0
https://www.codecogs.com/eqnedit.php?latex=10%5E%7B10%5E%7B20%7D%7D%0


occur. Practically this might not be true, but at least given the kind of model we’re making it                  
would be very difficult to distinguish between them, and as it turns out you can make very                 
accurate predictions about thermodynamics by assuming that. We’re also going to assume            
that microstates are mutually exclusive, so a system can’t be in multiple ones at once. 
 
So, back to maths. Given a system with possible microstates, and a set of possible                
microstates of size , the chance the system is in a state in that set is given by .                   If that  
set describes a possible macrostate, this tells us that the chance that a system is in a                 
particular macrostate is proportional to the number of possible microstates that fit the             
description of that macrostate. From this, we can conclude that the most likely macrostate for               
a system to be in is the one with the most corresponding microstates.  
 
But, wait a minute. This whole description of systems seems very similar to the information               
sources we were talking about before. There’s something you can check (a system in a               
particular macrostate), and when you do you can observe one of some number of possible               
outcomes (the microstate), and there’s a corresponding probability for each outcome (in this             
case, ). So, that means we can calculate an  value for it!  
 
 
 
 
Which is monotonically increasing with regards to . Combining these two results tells us              
that the most likely macrostate to observe a system in is the macrostate with the highest                 
value, and presumably then if a system can change over time to a state with a higher                  
value, that would be the statistically likely option. With smaller systems, it’s reasonable that it               
might not end up in that state, but as the size increases the chance that it’s found in that                   
state scales very quickly. Going back to the balloon example, the probability that 50% of the                
molecules are in each balloon, is at least times higher than the chance that 49% are in                  
one and 51% are in the other. Because of this, if a large system can change in a way that                    
increases , it seems almost guaranteed that it would try and move in that direction, to the                 
point that someone so inclined might even call it a physical law.  
 
What’s the sneaky piece of information I’ve left out? 
 
The name of is information entropy​. 
 
And, likewise, that mess is the second law of thermodynamics. Entropy has a reputation for               
being one of the most confusing and difficult concepts in physics, but hopefully this essay’s               
managed to give you some insight into it that you might not have had before. Of course, the                  
concept of entropy in physics isn’t ​actually the same, and in the wider context of physics it’s                 
treated entirely differently than in Information theory. But, they’re still incredibly closely linked             
concepts. Personally, I think that introducing entropy from the (relatively) more intuitive            
concept of information entropy would help quite a lot of people trying to get their head                
around it. That’s why I ended up writing this essay in the first place. 
 
So, to come back to the title, what does texting have to do with thermodynamics?  

https://www.codecogs.com/eqnedit.php?latex=N%0
https://www.codecogs.com/eqnedit.php?latex=n%0
https://www.codecogs.com/eqnedit.php?latex=H%0
https://www.codecogs.com/eqnedit.php?latex=N%0
https://www.codecogs.com/eqnedit.php?latex=H%0
https://www.codecogs.com/eqnedit.php?latex=H%0
https://www.codecogs.com/eqnedit.php?latex=10%5E%7B10%5E%7B22%7D%7D%0
https://www.codecogs.com/eqnedit.php?latex=H%0
https://www.codecogs.com/eqnedit.php?latex=H%0


 
Apparently, quite a lot. 
 
Lastly, I thought it might be interesting to mention why Claude Shannon, the mathematician              
who introduced all of these ideas, used the phrase information entropy in the first place, as                
the story very accurately describes both my own experience looking at entropy, but also that               
of many, many other maths and physics students who have unfortunately stumbled upon it.              
Supposedly John von Neumann (another incredibly influential mathematician and physicist)          
insisted that Shannon should, saying: 
 
“​Y​ou should call it entropy, for two reasons. In the first place your uncertainty function has                
been used in sta​ti​stical mechanics under that name, so it already has a name. In the second                 
place, and more importantly, no one really knows what entropy really is, so in a debate you                 
will always have the advantage.” 
 

 


