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1.1 – Introduction   
My essay is inspired by a question on the 2012 UKMT Senior Mathematical Challenge “which of the following 

numbers do not have a square root in the form 𝑥 + 𝑦√𝑘, where x and y are positive integers?”, and amalgamates 
elementary number theory and discrete mathematics – my favourite areas of mathematics! 
 

I will be exploring the nature of numbers in the form 𝑎 + 𝑏√𝑘, where a, b are non-zero integers and k is a non-
square positive integer, namely its irrationality; what happens when it undergoes basic arithmetic operations; 

its integer powers and the relationship between 𝑎 + 𝑏√𝑘  and (𝑎 + 𝑏√𝑘)
𝑛

; lastly, its minimal polynomial. 
 
I want to reiterate that I will not be dealing with complex or non-integer rational numbers, or else this essay 
would be beyond the level of high school mathematics. 
 
 

2.1 – Irrationality of 𝒂 + 𝒃√𝒌 
Irrational numbers are numbers that cannot be expressed as fraction. Due to the presence of a square root, it is 

safe to assume that 𝑎 + 𝑏√𝑘 is irrational. Also, the sum of an integer, a rational number, and an irrational number 
is always irrational, because if not, then the irrational number would be the difference of 2 rational numbers, 

which is rational, and thus, a contradiction (James Madison University , 2000). By a similar argument, 𝑏√𝑘 is 

irrational if √𝑘 is irrational (a rational number divided by some other rational number gives another rational 

number, suggesting that √𝑘 would be rational, which is absurd and hence, a contradiction) (MathBitsNotebook). 

However, assuming here that √𝑘 is irrational is not rigorous. Hence, by proving the irrationality of √𝑘, we can 

prove that 𝑎 + 𝑏√𝑘 is also irrational. 
 

Assume √𝑘 is rational. √𝑘 can then be expressed as 
𝑥

𝑦
, where the greatest common divisor of p and q (gcd(p,q)) 

is 1.  
 

√𝑘 =
𝑥

𝑦
 

 

𝑘 =
𝑥2

𝑦2
 

 
𝑥2 = 𝑘𝑦2  

 
This means that k divides x2. 
 
From Euclid’s lemma, if a prime number p divides x2, then p also divides x. Thus, from the fundamental theorem 
of arithmetic, as k can be expressed uniquely as the product of its distinct prime factors pi raised to a certain 
integer power qi, 

 
𝑘 =  𝑝1

𝑞1 ×  𝑝2
𝑞2 × … ×  𝑝𝑚

𝑞𝑚 × … ×  𝑝𝑠
𝑞𝑠 × … × 𝑝𝑛

𝑞𝑛 (where all 𝑞𝑖 ≥ 1 and there exists a qi [let us call this qs] that 
is odd, since k is a non-square) 

 
there exists some prime pm that divides both x and x2. Moreover, when x2 is expressed as the product of its primes, 
pm must be raised to an even power, since pm also divides x. As x and y are co-prime, x2 and y2 are also co-prime 
(Illinois University), which mean they share no common factors. This means that all prime factors raised to their 

respective powers, 𝑝𝑖
𝑞𝑖 , must divide x2 fully, indicating that all qi must be even. However, qs is odd, which is a 

contradiction.  
 

Hence, by proof by contradiction, the statement that “√𝑘 is rational” is absurd, so √𝑘 must be irrational, which 

confirms that 𝑎 + 𝑏√𝑘 is irrational. 
 
 
 



 

 2 

2.2 – Basic Arithmetic Operations on 𝑎 + 𝑏√𝑘 
 
Addition & Subtraction 

Addition and subtraction on numbers in the form 𝑎 + 𝑏√𝑘 are very straightforward, just like normal integers:  
 

(𝑎1 + 𝑏1√𝑘) + (𝑎2 + 𝑏2√𝑘) + … +(𝑎𝑛 + 𝑏𝑛√𝑘)   = (𝑎1 + 𝑎2+ . . . +𝑎𝑛) +  (𝑏1 + 𝑏2+ . . . +𝑏𝑛)√𝑘 

(𝑎1 + 𝑏1√𝑘) - (𝑎2 + 𝑏2√𝑘) - … - (𝑎𝑛 + 𝑏𝑛√𝑘)   = (𝑎1 − 𝑎2− . . . −𝑎𝑛) +  (𝑏1 − 𝑏2− . . . −𝑏𝑛)√𝑘 

 
We can see that when adding or subtracting two numbers in this form, a number in the same form is obtained. 

Hence, the set of numbers in the form 𝑎 + 𝑏√𝑘 is closed under addition (provided that (𝑎1 + 𝑎2+ . . . +𝑎𝑛), (𝑏1 +
𝑏2+ . . . +𝑏𝑛) ≠ 0) and subtraction (provided that (𝑎1 − 𝑎2− . . . −𝑎𝑛), (𝑏1 − 𝑏2− . . . −𝑏𝑛) ≠ 0). Furthermore, this 

also shows that if one wants to find two or more numbers in the form 𝑎 + 𝑏√𝑘 that add or subtract to give a 
number in same form with a and b given, they can compare coefficients to form an under-specified system of 
linear equations (only 1 linear equation in this case), which has infinite solutions. 

 
Multiplication 
Similarly, when multiplying two numbers in this form, a number in the same form is obtained: 
 

(𝑎1 + 𝑏1√𝑘) × (𝑎2 + 𝑏2√𝑘) =  (𝑎1𝑎2 + 𝑏1𝑏2𝑘) + (𝑎1𝑏2 + 𝑎2𝑏1)√𝑘 

 

As this number is also in the form 𝑎 + 𝑏√𝑘, since 𝑎1, 𝑏1, 𝑎2, 𝑏2, 𝜖 ℤ, 𝑎 = (𝑎1𝑎2 + 𝑏1𝑏2) 𝜖 ℤ and 𝑏 = (𝑎1𝑏2 +
𝑎2𝑏1) 𝜖 ℤ. Thus, one can deduce that no matter how many times a number in this form is multiplied by another 
number in the same form, a number of the same form is always obtained, i.e. the set of numbers in the form 𝑎 +

𝑏√𝑘 is closed under multiplication as well. 
 
Division 
On the other hand, the nature of these numbers is a little more complicated with division: 
 

(𝑎1+𝑏1√𝑘)

(𝑎2+𝑏2√𝑘)
= 

(𝑎1+𝑏1√𝑘)(𝑎2−𝑏2√𝑘)

(𝑎2
2−𝑏2

2𝑘)
 = 

(𝑎1𝑎2−𝑏1𝑏2𝑘) + (𝑎2𝑏1−𝑎1𝑏2)√𝑘

(𝑎2
2−𝑏2

2𝑘)
 = 

(𝑎1𝑎2−𝑏1𝑏2𝑘)  

(𝑎2
2−𝑏2

2𝑘)
+  

(𝑎2𝑏1−𝑎1𝑏2)

(𝑎2
2−𝑏2

2𝑘)
√𝑘 . 

 

However, for the sake of this exploration, we are only interested in integers, i.e. when 
(𝑎1𝑎2−𝑏1𝑏2𝑘)  

(𝑎2
2−𝑏2

2𝑘)
,

(𝑎2𝑏1−𝑎1𝑏2)

(𝑎2
2−𝑏2

2𝑘)
 

𝜖 ℤ; when these former two expressions are integers, it gives rise to factors of 𝑎1 + 𝑏1√𝑘 that are also numbers 
in the same form. Let us call these numbers the irrational divisors or IDs. 
 
Finding the IDs 

Let us say the number we want to find the IDs of 𝑚 + 𝑛√𝑘. By definition, 
(𝑚+𝑛√𝑘)

(𝑎2+𝑏2√𝑘)
=(𝑎1 + 𝑏1√𝑘), so (𝑚 + 𝑛√𝑘)  =

 (𝑎2 + 𝑏2√𝑘)(𝑎1 + 𝑏1√𝑘) =  (𝑎1𝑎2 + 𝑏1𝑏2𝑘)  +  (𝑎1𝑏2 + 𝑎2𝑏1)√𝑘. If we compare coefficients, we obtain 1.1 and 

1.2. 
𝑎1𝑎2 + 𝑘𝑏1𝑏2 =  𝑚  (1.1) 
𝑎1𝑏2 + 𝑎2𝑏1 =  𝑛  (1.2) 

 
 
These 2 equations represent a system of linear Diophantine equations. One possible way to solve this system of 
these equations would be to use trial-and-error, but it would be very inefficient, since we would have to then go 
through every possible combination for a1, a2, b1, and b2 to find possible solutions. Finding a general solution for 

this system of linear Diophantine equations (i.e. finding a general solution for all the IDs of 𝑚 + 𝑛√𝑘) requires 
field theory, which is beyond the level of mathematics in this exploration. Nonetheless, as it is too hard to solve 
these equations, we could perhaps ask a simpler question, namely when k specified. Thus, let us examine the 

simplest case where k = 2 (i.e. 𝑚 + 𝑛√2). We want to know whether 𝑚 + 𝑛√2 can always be factorised, and to 
determine this, we need to familiarise ourselves with the concept of the norm. 
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For a number 𝑚 + 𝑛√2, we define its norm to be N(𝑚 + 𝑛√2) = (𝑚 + 𝑛√2)(𝑚 − 𝑛√2) = 𝑚2 − 2𝑛2 𝜖 ℤ. If X = 

𝑎 + 𝑏√2 and Y = 𝑐 + 𝑑√2, then we can verify that N(XY) = N(X)N(Y), which is known as the multiplicative 

property, since as N(XY) = (𝑎𝑐 + 2𝑏𝑑)2 − ((𝑎𝑑 + 𝑏𝑐)√2)
2

=  𝑎2𝑐2 + 4𝑏2𝑑2 − 2𝑎2𝑑2 − 2𝑏2𝑐2 = (𝑎2 −

2𝑏2)(𝑐2 − 2𝑑2) = N(X)N(Y) (Cornell University). Moreover, when N(X) = ±1, we call X a unit (analogous to 1 in 
the set of positive integers).  
 
Therefore, let us first look at the case when N(X) = ±1, i.e. when 𝑎2 − 2𝑏2 = ±1. If X = PQ, then N(PQ) = 
N(P)N(Q) = ±1, so N(P) = ±1 and N(Q) = ±1. This means that all the pair of integer solutions (t,s) to the 

equation 𝑎2 − 2𝑏2 = ±1 form a number 𝑡 + 𝑠√2  that consists of IDs whose integer term and coefficient of √2 
also satisfy the same equation. Because 𝑎2 − 2𝑏2 = ±1 is a Pell’s equation that has infinite integer solutions (The 

IMO Compendium Group, 2007), 𝑡 + 𝑠√2 must have an infinite number of IDs. E.g., for the case when 𝑎2 − 2𝑏2 =

1, a few solutions are (1,1), (3,2), and (7,5). Therefore, if we want to find the IDs of 1 + √2 for example, we know 
it has infinite IDs. If we test this out for a few factors using the solutions (3,2), and (7,5), we see that 
(1+√2)

(3+2√2)
=(−1 + √2) and 

(1+√2)

(7+5√2)
=(3 − 2√2), which are indeed numbers in the desired form. 

 
Another case would be when N(X) = ±j, where j ≥ 2, i.e.  𝑎2 − 2𝑏2 = ±j 
1. If j is prime then, without loss of generality, N(P) = ±1 and N(Q) = ±j. By finding solutions to  𝑎2 − 2𝑏2 = ±j 

or ±1 and forming a number in the same form, we could determine the IDs of the original number; by dividing 

the original number by its IDs, other IDs could be determined. 

2. If j is composite then, without loss of generality, N(P) = ±𝑓1 and N(Q) = ±𝑓2, where f1 and f2 are two arbitrary 

factors. Like above, by finding solutions to  𝑎2 − 2𝑏2 = ±𝑓1 or ±𝑓2 and forming a number in the same form, 

we could determine the IDs of the original number; by dividing the original number by its IDs, other factors 

could be formed. Nonetheless, it is important to note that 𝑎2 − 2𝑏2 = ±𝑓1 or ±𝑓2 does not always has integer 

solutions, as some Pell-type equations such 𝑎2 − 2𝑏2 = 10 do not have integer solutions (this was verified 

using Wolfram Alpha). 

For instance, if j = 3, then we need to find solutions to  𝑎2 − 2𝑏2 = ±3 or ±1. Let us look at 𝑎2 − 2𝑏2 = ±3 (since 
we have already looked at 𝑎2 − 2𝑏2 = ±1). A few solutions of this Pell-type equation are (1,-1), (17,-12), and 

(41,-29). Therefore, 1 − √2 has infinite IDs, including 17 − 12√2 and 41 − 29√2, as 
(1−√2)

(17−12√2)
=(−7 − 5√2) and 

(1+√2)

(41−29√2)
=(17 + 12√2), which are indeed numbers in the desired form. 

 

Moreover, from our observations above, we now know that the number 𝑚 + 𝑛√2 does not necessarily have 

factors, meaning that the set of numbers in the form 𝑚 + 𝑛√2 is not closed under division. If we extend these 

observations, it is likely that the set of numbers in the form 𝑚 + 𝑛√𝑘 is also not closed under division, but we 
cannot be certain about this assertion, since we have not proved this. 
 

2.3 – Positive integer powers of 𝑎 + 𝑏√𝑘 

Let us say that (𝑎 + 𝑏√𝑘)
𝑛

= 𝑎𝑛 + 𝑏𝑛√𝑘, where n is a positive integer. If we take the binomial expansion of 

(𝑎 + 𝑏√𝑘)
𝑛

, the result is quite remarkable because we always obtain a number in the same form: 

 
If n is odd: 

(𝑎 + 𝑏√𝑘)
𝑛

=  (𝑛
0

)𝑎𝑛 + (𝑛
1

)𝑎𝑛−1(𝑏√𝑘) + (𝑛
2

)𝑎𝑛−2(𝑏√𝑘)
2

+. . . +( 𝑛
𝑛−1

)𝑎(𝑏√𝑘)
𝑛−1

+ (𝑛
𝑛

)(𝑏√𝑘)
𝑛

 = 

(𝑎𝑛 + (
𝑛(𝑛 − 1)

2!
) 𝑎𝑛−2𝑘𝑏2+. . . + (

𝑛(𝑛 − 1)

2!
) 𝑎𝑏𝑛−1𝑘

1
2

𝑛−
1
2) + (𝑛𝑎𝑛−1𝑏 + ⋯ + 𝑏𝑛𝑘

1
2

𝑛−
1
2) √𝑘 

 
If n is even: 

(𝑎𝑛 + (
𝑛(𝑛 − 1)

2!
) 𝑎𝑛−2𝑘𝑏2+. . . +𝑏𝑛𝑘

𝑛
2) + (𝑛𝑎𝑛−1𝑏 + ⋯ + (

𝑛(𝑛 − 1)

2!
) 𝑎𝑏𝑛−1𝑘

1
2

𝑛−
1
4) √𝑘 
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By inspection, as 𝑎, 𝑏, 𝑘, 𝑛 𝜖 ℤ, we can say the set of numbers in the form 𝑚 + 𝑛√𝑘 is closed under exponentiation 
(where the exponent is a positive integer). Let us carry out an example. If a = 1, b = 1, k = 2, and n = 3, 

(1 + √2)
3

= 1 + 3√2 + 6 + 2√2 = 7 + 5√2, which is indeed a number in the same form.  

 
Observations 

Expanding (𝑎 + 𝑏√𝑘)
𝑛

 using the binomial theorem is one method for finding the values 𝑎𝑛 and 𝑏𝑛. However, 

what if we want to directly relate the values 𝑎𝑛 and 𝑏𝑛 to 𝑎 and 𝑏? If we make some further observations, we can 
find recurrence relations for the values 𝑎𝑛 and 𝑏𝑛. 
  

 
 
 
We can clearly now see a pattern for both the values for 𝑎𝑛 and 𝑏𝑛, as  𝑎𝑛 = 𝑎1𝑎𝑛−1 + 2𝑏1𝑏𝑛−1 and 𝑏𝑛 = 𝑏1𝑎𝑛−1 +
𝑎1𝑏𝑛−1, but we cannot assume that this is true for other numbers where k is different, and/or 𝑎 and/or 𝑏 are 
negative. So, we have to continue making observations for different values and signs. 

 
 

𝒂𝟏 + 𝒃𝟏√𝒌 n (𝒂𝟏 + 𝒃𝟏√𝒌)
𝒏

 𝒂𝒏 𝒃𝒏 Minimal polynomial 
(𝜶𝒏𝒙𝟐 + 𝜷𝒏𝒙 + 𝜸𝒏) 

𝜶𝒏 𝜷𝒏 𝜸𝒏 

 
 

𝟏 + √𝟐 

1 1 + √2 1 1 𝑥2 − 2𝑥 − 1 1 -2 -1 

2 3 + 2√2 3 2 𝑥2 − 6𝑥 + 1 1 -6 1 

3 7 + 5√2 7 5 𝑥2 − 14𝑥 − 1 1 -14 -1 

… … … … … … … ... 
n (𝑎𝑛−1 + 2𝑏𝑛−1) + (𝑎𝑛−1 + 𝑏𝑛−1) √2 𝑎𝑛−1 + 2𝑏𝑛−1 𝑎𝑛−1 + 𝑏𝑛−1 𝑥2 − 2𝑎𝑛𝑥 + 𝛾1

𝑛 1 -2𝑎𝑛 𝛾1
𝑛 

 
 

𝟐 + √𝟐 

1 2 + √2 2 2 𝑥2 − 4𝑥 + 1 1 -4 1 

2 6 + 4√2 6 4 𝑥2 − 12𝑥 + 1 1 -12 1 

3 20 + 14√2 20 14 𝑥2 − 40𝑥 + 1 1 -40 1 

… … … … … … … … 
n (2𝑎𝑛−1 + 2𝑏𝑛−1) + (𝑎𝑛−1 + 2𝑏𝑛−1) √2 2𝑎𝑛−1 + 2𝑏𝑛−1 𝑎𝑛−1 + 2𝑏𝑛−1 𝑥2 − 2𝑎𝑛𝑥 + 𝛾1

𝑛 1 -2𝑎𝑛 𝛾1
𝑛 

 
 

𝟑 + √𝟐 

1 3 + √2 3 1 𝑥2 − 6𝑥 + 7 1 -6 7 

2 11 + 6√2 11 6 𝑥2 − 22𝑥 + 49 1 -22 49 

3 45 + 29√2 45 29 𝑥2 − 90𝑥 + 343 1 -90 343 

… … … … … … … … 
n (3𝑎𝑛−1 + 2𝑏𝑛−1) + (𝑎𝑛−1 + 3𝑏𝑛−1) √2 3𝑎𝑛−1 + 2𝑏𝑛−1 𝑎𝑛−1 + 3𝑏𝑛−1 𝑥2 − 2𝑎𝑛𝑥 + 𝛾1

𝑛 1 -2𝑎𝑛 𝛾1
𝑛 

 
 

𝟏 + 𝟐√𝟐 

1 1 + 2√2 1 2 𝑥2 − 2𝑥 − 7 1 -2 -7 

2 9 + 4√2 9 4 𝑥2 − 18𝑥 + 49 1 -18 49 

3 25 + 22√2 25 22 𝑥2 − 50𝑥 + 343 1 -50 343 

… … … … … … … ... 
n (𝑎𝑛−1 + 4𝑏𝑛−1) + (2𝑎𝑛−1 + 𝑏𝑛−1) √2 𝑎𝑛−1 + 4𝑏𝑛−1 2𝑎𝑛−1 + 𝑏𝑛−1 𝑥2 − 2𝑎𝑛𝑥 + 𝛾1

𝑛 1 -2𝑎𝑛 𝛾1
𝑛 

 
 

𝟐 + 𝟐√𝟐 

1 2 + 2√2 2 2 𝑥2 − 4𝑥 + 7 1 -4 7 

2 12 + 8√2 12 8 𝑥2 − 24𝑥 + 49 1 -24 49 

3 56 + 40√2 56 40 𝑥2 − 112𝑥 + 343 1 -112 343 

… … … … … … … ... 
n (2𝑎𝑛−1 + 4𝑏𝑛−1) + (2𝑎𝑛−1 + 2𝑏𝑛−1) √2 2𝑎𝑛−1 + 4𝑏𝑛−1 2𝑎𝑛−1 + 2𝑏𝑛−1 𝑥2 − 2𝑎𝑛𝑥 + 𝛾1

𝑛 1 -2𝑎𝑛 𝛾1
𝑛 

 
 

𝟑 + 𝟐√𝟐 

1 3 + 2√2 3 2 𝑥2 − 6𝑥 + 1 1 -6 1 

2 17 + 12√2 17 12 𝑥2 − 34𝑥 + 1 1 -36 1 

3 99 + 70√2 99 70 𝑥2 − 198𝑥 + 343 1 -198 1 

… … … … … … … ... 
n (3𝑎𝑛−1 + 4𝑏𝑛−1) + (2𝑎𝑛−1 + 3𝑏𝑛−1) √2 3𝑎𝑛−1 + 4𝑏𝑛−1 2𝑎𝑛−1 + 3𝑏𝑛−1 𝑥2 − 2𝑎𝑛𝑥 + 𝛾1

𝑛 1 -2𝑎𝑛 𝛾1
𝑛 

 
 

𝟏 + 𝟑√𝟐 

1 1 + 3√2 1 3 𝑥2 − 2𝑥 − 17 1 -2 -17 

2 19 + 6√2 19 6 𝑥2 − 38𝑥 + 289 1 -38 289 

3 55 + 63√2 55 63 𝑥2 − 110𝑥 + 4913 1 -110 4913 

… … … … … … … ... 
n (𝑎𝑛−1 + 6𝑏𝑛−1) + (3𝑎𝑛−1 + 𝑏𝑛−1) √2 𝑎𝑛−1 + 6𝑏𝑛−1 3𝑎𝑛−1 + 𝑏𝑛−1 𝑥2 − 2𝑎𝑛𝑥 + 𝛾1

𝑛 1 -2𝑎𝑛 𝛾1
𝑛 

 
 

𝟐 + 𝟑√𝟐 

1 2 + 3√2 2 3 𝑥2 − 4𝑥 − 14 1 -4 -14 

2 22 + 12√2 22 12 𝑥2 − 44𝑥 + 196 1 -44 196 

3 116 + 90√2 116 90 𝑥2 − 232𝑥 − 2744 1 -232 -2744 

… … … … … … … ... 
n (2𝑎𝑛−1 + 6𝑏𝑛−1) + (3𝑎𝑛−1 + 2𝑏𝑛−1) √2 2𝑎𝑛−1 + 6𝑏𝑛−1 3𝑎𝑛−1 + 2𝑏𝑛−1 𝑥2 − 2𝑎𝑛𝑥 + 𝛾1

𝑛 1 -2𝑎𝑛 𝛾1
𝑛 

…. … … … … … … … ... 
… … … … … … … ... 

Figure 1.1 – A table to show the observations of (𝑎 + 𝑏√𝑘)
𝑛
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Figure 1.1 (continued) 

 
 
From Figure 1.1, we realise we can modify our recurrence relation for an (the table also shows that the recurrence 
relation for 𝑏𝑛 stays the same, since it is independent of the value of k) to 𝑎𝑛 = 𝑎1𝑎𝑛−1 + 𝑘𝑏1𝑏𝑛−1. For example, 

suppose we want to find the values a4 and b4 of (15 + 9√11)
4

= 𝑎4 + 𝑏𝑛√11. If we know 𝑎3 and 𝑏3, we should be 

able to calculate 𝑎4 and 𝑏4 using the recurrence relations for 𝑎𝑛 and 𝑏𝑛. 𝑎3 = 43470 and 𝑏3 = 14094, so 𝑎4 = 
15 × 43470 + 11 × 9 × 14094 = 2,047,356 and 𝑏4 = 15 × 14094 + 9 × 43470 = 602640, which are indeed the 

values for 𝑎4 and 𝑏4 of (15 + 9√11)
4

. 

 
If we carry out the same process for 𝑎 and/or 𝑏 being a negative integer, we can figure out the recurrence 
relations for 4 general cases, which are in fact the same: 
 

 𝒃𝟏𝝐 ℤ+ 𝒃𝟏𝝐 ℤ− 

𝒂𝟏𝝐 ℤ+ 𝑎𝑛 = 𝑎1𝑎𝑛−1 + 𝑘𝑏1𝑏𝑛−1 
𝑏𝑛 = 𝑏1𝑎𝑛−1 + 𝑎1𝑏𝑛−1 𝒂𝟏𝝐 ℤ− 

 
Proving these recursions using induction 
These recurrences are based on mere observation, so in order to completely validate them we must prove them. 
One way to do this is by using proof by induction: 
 
1. Let us call the statements 𝑎𝑛 = 𝑎1𝑎𝑛−1 + 𝑘𝑏1𝑏𝑛−1 and 𝑏𝑛 = 𝑏1𝑎𝑛−1 + 𝑎1𝑏𝑛−1 A(n) and B(n) respectively. 

2. Let 𝑎1 = 𝑠 and 𝑏1 = 𝑡, i.e. consider the number 𝑠 + 𝑡√𝑘. 

Base Case: 

For n = 2, (𝑠 + 𝑡√𝑘)
2 

=  (𝑠2 + 𝑘𝑡2) + (2𝑠𝑡)√𝑘, so 𝑎2 = 𝑠2 + 𝑘𝑡2 and 𝑏2 = 2𝑠𝑡 

Also, 𝑎2 = 𝑠 × 𝑠 + 𝑘𝑡 × 𝑡 = 𝑠2 + 𝑘𝑡2 and 𝑏2 = 𝑡 × 𝑠 + 𝑠 × 𝑡 = 2𝑠𝑡 
 
Therefore, A(n) and B(n) are true for n=2. 
 
 

𝒂𝟏 + 𝒃𝟏√𝒌 n (𝒂𝟏 + 𝒃𝟏√𝒌)
𝒏

 𝒂𝒏 𝒃𝒏 Minimal polynomial 
(𝜶𝒏𝒙𝟐 + 𝜷𝒏𝒙 + 𝜸𝒏) 

𝜶𝒏 𝜷𝒏 𝜸𝒏 

 
 

𝟏 + √𝟑 

1 1 + √3 1 1 𝑥2 − 2𝑥 − 2 1 -2 -2 

2 4 + 2√3 4 2 𝑥2 − 8𝑥 + 4 1 -8 4 

3 10 + 6√3 10 6 𝑥2 − 20𝑥 − 8 1 -20 -8 

… … … … … … … ... 
n (𝑎𝑛−1 + 3𝑏𝑛−1) + (𝑎𝑛−1 + 𝑏𝑛−1) √3 𝑎𝑛−1 + 3𝑏𝑛−1 𝑎𝑛−1 + 𝑏𝑛−1 𝑥2 − 2𝑎𝑛𝑥 + 𝛾1

𝑛 1 -2𝑎𝑛 𝛾1
𝑛 

 

𝟐 + √𝟑 

1 2 + √3 2 1 𝑥2 − 4𝑥 + 1 1 -4 1 

2 7 + 4√3 7 4 𝑥2 − 14𝑥 + 1 1 -14 1 

3 26 + 15√3 26 15 𝑥2 − 52𝑥 + 1 1 -52 1 

… … … … … … … … 
n (2𝑎𝑛−1 + 3𝑏𝑛−1) + (𝑎𝑛−1 + 2𝑏𝑛−1) √3 2𝑎𝑛−1 + 3𝑏𝑛−1 𝑎𝑛−1 + 2𝑏𝑛−1 𝑥2 − 2𝑎𝑛𝑥 + 𝛾1

𝑛 1 -2𝑎𝑛 𝛾1
𝑛 

 
 

𝟏 + 𝟐√𝟑 

1 1 + 2√3 1 2 𝑥2 − 2𝑥 − 11 1 -2 -11 

2 13 + 4√3 13 4 𝑥2 − 26𝑥 + 121 1 -26 121 

3 37 + 30√3 37 30 𝑥2 − 74𝑥 − 1331 1 -74 -1331 

… … … … … … … … 
n (𝑎𝑛−1 + 6𝑏𝑛−1) + (2𝑎𝑛−1 + 𝑏𝑛−1) √3 𝑎𝑛−1 + 6𝑏𝑛−1 2𝑎𝑛−1 + 𝑏𝑛−1 𝑥2 − 2𝑎𝑛𝑥 + 𝛾1

𝑛 1 -2𝑎𝑛 𝛾1
𝑛 

 
 

𝟐 + 𝟐√𝟑 

1 2 + 2√3 2 2 𝑥2 − 4𝑥 − 8 1 -4 -8 

2 16 + 8√3 16 8 𝑥2 − 32𝑥 + 64 1 -32 64 

3 80 + 48√3 80 48 𝑥2 − 160𝑥 − 512 1 -160 -512 

… … … … … … … ... 
n (2𝑎𝑛−1 + 6𝑏𝑛−1) + (2𝑎𝑛−1 + 2𝑏𝑛−1) √3 2𝑎𝑛−1 + 6𝑏𝑛−1 2𝑎𝑛−1 + 2𝑏𝑛−1 𝑥2 − 2𝑎𝑛𝑥 + 𝛾1

𝑛 1 -2𝑎𝑛 𝛾1
𝑛 

 
 

𝟏 + 𝟑√𝟑 

1 1 + 3√3 1 3 𝑥2 − 2𝑥 − 26 1 -4 -26 

2 28 + 6√3 28 6 𝑥2 − 56𝑥 + 676 1 -56 676 

3 82 + 90√3 82 90 𝑥2 − 164𝑥 − 17576 1 -164 −17576 

… … … … … … … … 
n (𝑎𝑛−1 + 9𝑏𝑛−1) + (3𝑎𝑛−1 + 𝑏𝑛−1) √3 𝑎𝑛−1 + 9𝑏𝑛−1 3𝑎𝑛−1 + 𝑏𝑛−1 𝑥2 − 2𝑎𝑛𝑥 + 𝛾1

𝑛 1 -2𝑎𝑛 𝛾1
𝑛 

… … … … … … … …  
… … … … … … … …  
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Inductive Step: 
Assume that A(n) and B(n) are true for n=m: 

 
𝑎𝑚 = 𝑎1𝑎𝑚−1 + 𝑘𝑏1𝑏𝑚−1 and 𝑏𝑚 = 𝑏1𝑎𝑚−1 + 𝑎1𝑏𝑚−1. 

 
We are required to prove that if A(n) and B(n) are true for n=m, then A(n) and B(n) are true for n=m+1. Thus, 
we are working towards: 
 

𝑎𝑚+1 = 𝑎1𝑎𝑚 + 𝑘𝑏1𝑏𝑚 and 𝑏𝑚+1 = 𝑏1𝑎𝑚 + 𝑎1𝑏𝑚. 
 

We know that (𝑠 + 𝑡√𝑘)
𝑚 

= 𝑎𝑚 + 𝑏𝑚√𝑘. So, 

 

(𝑠 + 𝑡√𝑘)
𝑚+1 

= (𝑠 + 𝑡√𝑘)
𝑚 

(𝑠 + 𝑡√𝑘) = (𝑎𝑚 + 𝑏𝑚√𝑘)(𝑠 + 𝑡√𝑘) = (𝑠𝑎𝑚 + 𝑘𝑡𝑏𝑚) + (𝑡𝑎𝑚 + 𝑠𝑏𝑚)√𝑘. 

𝑎𝑚+1 = 𝑠𝑎𝑚 + 𝑘𝑡𝑏𝑚 = 𝑎1𝑎𝑚 + 𝑘𝑏1𝑏𝑚 and 𝑏𝑚+1 = 𝑡𝑎𝑚 + 𝑠𝑏𝑚 = 𝑏1𝑎𝑚 + 𝑎1𝑏𝑚. 
 
Therefore, A(m+1) and B(m+1) are true. 
 
Henceforth, by the principle of mathematical induction, if A(n) and B(n) are true, then A(n+1) and B(n+1) are 
also true, and because A(2) and B(2) are true, A(n) and B(n) are true for all 𝑛 ≥ 2. 
 
Solving simultaneous recurrence relations. 
Now that we have proved that A(n) and B(n) are true for all 𝑛 ≥ 2 (A(1) and B(1) are given), we can solve them 
simultaneously, as we have a system of two linear first order recurrence relations. Solving these recurrence 
relations, we obtain to the following solutions: 
 

𝑎𝑛 =
(𝑎1 + 𝑏1√𝑘)

𝑛
+ (𝑎1 − 𝑏1√𝑘)

𝑛

2
 

𝑏𝑛 =
(𝑎1 + 𝑏1√𝑘)

𝑛
− (𝑎1 − 𝑏1√𝑘)

𝑛

2√𝑘
 

 

Let us carry out an example where we want to find (5 + 5√7)
5 

. From the solutions above: 

 

𝑎5 =
(5+5√7)

5
+(5−5√7)

5

2
= 987500  

 

𝑏5 =
(5+5√7)

5
−(5−5√7)

5

2√7
= 387500,  

 

which are indeed the values for a5 and b5 for (5 + 5√7)
5 

.  

 
By looking at these solutions for the recurrence relations, we realise that they make sense, since 𝑎𝑛 eliminates 

all the irrational terms (including √7) and divides through by 2, since the rational numbers are doubled. 

Similarly, 𝑏𝑛 eliminates all the rational terms and divides through by 2√7 since the irrational numbers are 

doubled and 𝑏𝑛 does not include √7 . As mathematicians, we are relieved as we can corroborate that the binomial 

expansion is the fastest way to calculate (𝑎 + 𝑏√𝑘)
𝑛

 - the solutions for the recurrence relations for 𝑎𝑛 and 𝑏𝑛 

themselves include two terms in the form (𝑎 + 𝑏√𝑘)
𝑛

, which means that it takes exponentially more time to find 

𝑎𝑛 and 𝑏𝑛 relative to using binomial expansion. 
 

2.4 – The minimal polynomial of 𝑎 + 𝑏√𝑘 
The last four columns of Figure 1.1 show the minimal polynomial of 𝑎 + 𝑏√𝑘, which is the unique, lowest degree 

polynomial with integer coefficients (including the term independent of the variable) that has 𝑎 + 𝑏√𝑘 as one of 
its roots. Additionally, the coefficient of the highest degree term is required to be 1. 
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The first observation I made from Figure 1.1 was that all the coefficients of the all the terms of 𝛼𝑛𝑥2 + 𝛽𝑛𝑥 + 𝛾𝑛 

were integers. Also, for every single observation, the minimal polynomial of (𝑎 + 𝑏√𝑘)
𝑛

= 𝑎𝑛 + 𝑏𝑛√𝑘 was 𝑥2 −

2𝑎𝑛𝑥 + 𝛾1
𝑛, where 𝛾1 is the constant term of the minimal polynomial of 𝑎1 + 𝑏1√𝑘. We can prove these 

observations using the quadratic formula and comparing coefficients: 
 
Proving these observations 
The quadratic formula is: 
 

𝑥 =  
−𝛽 ± √𝛽2 − 4𝛼𝛾

2𝛼 
 

 
 

In our case 𝛼 = 1 (by definition) and x = 𝑎 ± 𝑏√𝑘. So, by substitution, 
 

 

𝑎 ± 𝑏√𝑘 =  
−𝛽±√𝛽2−4𝛾

2 
 = 

−𝛽

2 
 ±

1

2 
√𝛽2 − 4𝛾 

 
 
Comparing coefficients, we obtain: 

 

𝑎 =   
−𝛽

2 
 and 𝑏√𝑘 =  

1

2 
√𝛽2 − 4𝛾 

 
 
Then, solving for 𝛽, we obtain: 

 
𝛽 = −2𝑎 (𝛽𝑛 = −2𝑎𝑛)  

 
Also, solving for 𝛾, we obtain: 

 
 

2𝑏√𝑘 =  √𝛽2 − 4𝛾 
4𝑏2𝑘 =  𝛽2 − 4𝛾 

4𝑏2𝑘 =  (−2𝑎)2 − 4𝛾 
4𝛾 =  4𝑎2 − 4𝑏2𝑘 

𝛾 =  𝑎2 − 𝑏2𝑘 (𝛾𝑛 = 𝑎𝑛
 2 − 𝑘𝑏𝑛

 2) 
 

However, in my observation we saw that 𝛾𝑛 = 𝛾1
𝑛. So, either my observation is incorrect or both of them are 

equivalent. So, let us try to prove that both of them are identical. 
 

𝛾1
𝑛 = (𝑎1

 2 − 𝑘𝑏1
 2)𝑛 = [(𝑎1 + 𝑏1√𝑘)(𝑎1 − 𝑏1√𝑘)]

𝑛
=  (𝑎1 + 𝑏1√𝑘)

𝑛
(𝑎1 − 𝑏1√𝑘)

𝑛
= (𝑎𝑛 + 𝑏𝑛√𝑘)(𝑎𝑛 − 𝑏𝑛√𝑘) =

𝑎𝑛
 2 − 𝑘𝑏𝑛

 2 = 𝛾𝑛 
 
Therefore, we have proved 𝛾1

𝑛 and 𝛾𝑛 are interchangeable expressions, meaning that 𝑥2 − 2𝑎𝑛 + 𝛾1
𝑛 = 𝑥2 −

2𝑎𝑛 + (𝑎𝑛
 2 − 𝑘𝑏𝑛

 2) is a valid expression for the minimal polynomial of  𝑎𝑛 + 𝑏𝑛√𝑘. 
 
Also, since 𝑎𝑛, 𝑏𝑛𝜖 ℤ, −2𝑎𝑛, 𝑎𝑛

 2 − 𝑘𝑏𝑛
 2𝜖 ℤ, so all the coefficients of the all the terms of 𝛼𝑛𝑥2 + 𝛽𝑛𝑥 + 𝛾𝑛 must be 

integers, which explains the first observation I made. From deduction, we also see that the converse is true (i.e. 
if the minimal polynomial has integer coefficients, 𝑎𝑛, 𝑏𝑛𝜖 ℤ). 
 

2.5 – Negative integer powers of 𝑎 + 𝑏√𝑘 
While 𝑎 + 𝑏√𝑘 raised to a positive integer power always guarantees a number in the desired form (i.e. when 𝑎𝑛 

and 𝑏𝑛 are integer values), (𝑎 + 𝑏√𝑘)
−𝑛

, where 𝑛 𝜖 ℤ+, does not necessarily do the same. 
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(𝑎 + 𝑏√𝑘)
−𝑛

=
1

(𝑎+𝑏√𝑘)
𝑛 =

1

𝑎𝑛+𝑏𝑛√𝑘
=  

𝑎𝑛−𝑏𝑛√𝑘

(𝑎𝑛+𝑏𝑛√𝑘)(𝑎𝑛−𝑏𝑛√𝑘)
=

𝑎𝑛−𝑏𝑛√𝑘

𝑎𝑛
 2− 𝑘𝑏𝑛

 2  = 
𝑎𝑛

𝑎𝑛
 2− 𝑘𝑏𝑛

 2 −
𝑏𝑛

𝑎𝑛
 2− 𝑘𝑏𝑛

 2 √𝑘 and 
𝑎𝑛

𝑎𝑛
 2− 𝑘𝑏𝑛

 2 ,
−𝑏𝑛

𝑎𝑛
 2− 𝑘𝑏𝑛

 2 

are not always integers. This is quite an interesting problem, but we can actually solve this problem by using 
certain properties of minimal polynomials that we investigated above (which is why I have put this section after 
Part 2.5 and not Part 2.4). 
 

From Part 2.4, we have proved that the number (𝑎 + 𝑏√𝑘)
𝑛

 is the root of 𝑥2 − 𝛽𝑛𝑥 + 𝛾𝑛 =  0 (where 𝛽𝑛, 𝛾𝑛𝜖 ℤ).  

As we know that (𝑎 + 𝑏√𝑘)
−𝑛

=
1

(𝑎+𝑏√𝑘)
𝑛, we can deduce that this number is the root of (

1

𝑥
)

2
− 𝛽𝑛 (

1

𝑥
) + 𝛾𝑛 =  0, 

which is equivalent to 𝑥2 −
𝛽𝑛

 𝛾𝑛
𝑥 +

1

 𝛾𝑛
=  0. We know that if 𝑎, 𝑏𝜖 ℤ, the minimal polynomial must have integer 

coefficients (the converse is also true), implying that 𝛾𝑛 must divide 𝛽𝑛 and 1. Therefore, by inspection, we can 
see that the only possible values for 𝛾𝑛 can be ±1. However, since 𝛾1

𝑛 = 𝛾𝑛, 𝛾1
𝑛 = ±1, so  𝛾1 = ±1. Therefore, 

as 𝛾1 = 𝑎1
 2 − 𝑘𝑏1

 2, whenever 𝑎1
 2 − 𝑘𝑏1

 2 = ±1, 𝑎𝑛
 2 − 𝑘𝑏𝑛

 2 = ±1 and (𝑎 + 𝑏√𝑘)
−𝑛

 equals a number in the desired 

form for all 𝑛 𝜖 ℤ+. 
 
Coincidently, 𝑎1

 2 − 𝑘𝑏1
 2 = ±1 is Pell’s equation, which we have already met above. Nonetheless, solving this 

equation using methods such as continued fractions are beyond the scope of this exploration, so for now I will 
just state the smallest integer solutions or the fundamental solutions to Pell’s equation for 𝑘 ≤ 10. 
 

Figure 1.2a – A table to show the fundamental solutions for 𝑎1
 2 − 𝑘𝑏1

 2 = 1 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 

Figure 1.2b – A table to show the fundamental solutions for 𝑎1
 2 − 𝑘𝑏1

 2 = −1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝒌 𝒂𝟏
  𝒃𝟏

  

1 - - 

2 ±3 ±2 

3 ±2 ±1 

4 - - 

5 ±9 ±4 

6 ±5 ±2 

7 ±8 ±3 

8 ±3 ±1 

9 - - 

10 ±19 ±6 

𝒌 𝒂𝟏
  𝒃𝟏

  

1 - - 

2 ±1 ±1 

3 - - 

4 - - 

5 ±2 ±1 

6 - - 

7 - - 

8 - - 

9 - - 

10 ±3 ±1 
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Therefore, if we take a random number 𝑚 + 𝑛√𝑘 and raise it to a negative integer power, it will either never be 
a number in the desired form or always be a number in the desired form, depending on whether 𝑚2 − 𝑘𝑛2 = ±1. 

For example, if we take 15 + 22√6, 152 − 6 × 222 = −2679 ≠ ±1, meaning that if we take (15 + 22√6)
−𝑛

, it 

will never equal a number in the desired form. However, if we take 19 + 6√10 on the other hand, 192 −

10 × 62 = 1, implying that (19 + 6√10)
−𝑛

, it will always equal a number in the desired form. E.g. for n = 

7, (19 + 6√10)
−7

=  56830852179 − 18003116202√10 which is indeed a number 𝑚 + 𝑛√𝑘, where m and n are 

non-zero integers. 
 

Moreover, we can also conclude that 𝑚 + 𝑛√𝑘 is closed under exponentiation (where the exponent is a negative 
integer) if and only if 𝑚2 − 𝑘𝑛2 = ±1 has integer solutions. 
 
3.1 – Applications of the observations made 
Although it may seem unlikely at first, certain properties of 𝑎 + 𝑏√𝑘 have practical purposes. Proving that we 

only obtain numbers in the desired form for (𝑎 + 𝑏√𝑘)
−𝑛

 when Pell’s equation is satisfied can clearly be applied 

to show the infinite nature of the integer solutions. In other words, there exists a bijection between the solutions 
to the problem I attempted to solve in Part 2.5 and the solutions of Pell’s equation, which is quite beautiful 
because it also elucidates an intuitive way in which one can generate all the integers solutions to Pell’s equation! 
 

Additionally, the set of numbers in form 𝑎 + 𝑏√𝑘 is closed linked to group theory as well. Even though numbers 

in the form 𝑎 + 𝑏√𝑘 appear similar superficially, understanding that this set of numbers do not form groups and 
rings under the basic operations and exponentiation allows mathematicians to comprehend the asymmetry that 
also exists between them. 
 

3.2 – Conclusion 
Finding subtle relationships between different numbers of this same form is an epitome of the connection, 
beauty, and mystery that lies within number theory and mathematics. Moreover, this essay has shed light upon 
the fact that any recognisable pattern can generally be explained using mathematics.  
 
To my fellow mathematicians, I hope further questions are asked. Do these numbers act similarly if we take any 
nth root?  What if we extend the realm of these numbers to the real and complex plane? What happens when k is 
a non-square negative integer, and when a and b are complex numbers? Are there any more fascinating links? 
The questions that can be asked are uncountably infinite… 
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