1.1 - Introduction
My essay is inspired by a question on the 2012 UKMT Senior Mathematical Challenge “which of the following

numbers do nothave a square root in the form x + yvk, where x and y are positive integers?”, and amalgamates
elementary number theory and discrete mathematics — my favourite areas of mathematics!

[ will be exploring the nature of numbers in the form a + bVk, where a, b are non-zero integers and k is a non-
square positive integer, namely its irrationality; what happens when it undergoes basic arithmetic operations;

its integer powers and the relationship between a + bvk and (a + b\/E)n; lastly, its minimal polynomial.

[ want to reiterate that I will not be dealing with complex or non-integer rational numbers, or else this essay
would be beyond the level of high school mathematics.

2.1 - Irrationality of a + bvk
Irrational numbers are numbers that cannot be expressed as fraction. Due to the presence of a square root, it is

safe to assume that a + bvk is irrational. Also, the sum of an integer, a rational number, and an irrational number
is always irrational, because if not, then the irrational number would be the difference of 2 rational numbers,

which is rational, and thus, a contradiction (James Madison University , 2000). By a similar argument, bvk is
irrational if vk is irrational (a rational number divided by some other rational number gives another rational
number, suggesting that vk would be rational, which is absurd and hence, a contradiction) (MathBitsNotebook).
However, assuming here that vk is irrational is not rigorous. Hence, by proving the irrationality of vk, we can
prove that a + bVk is also irrational.

Assume Vk is rational. Vk can then be expressed as % where the greatest common divisor of p and q (gcd(p,q))

is 1.

x
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This means that k divides x2.

From Euclid’s lemma, if a prime number p divides x2, then p also divides x. Thus, from the fundamental theorem
of arithmetic, as k can be expressed uniquely as the product of its distinct prime factors p; raised to a certain
integer power q;,

k= pfl X pgz X .o X pimx .. X pds x ... x p* (where all ¢; > 1 and there exists a q; [let us call this qs] that
is odd, since k is a non-square)

there exists some prime pm that divides both x and x2. Moreover, when x2 is expressed as the product of its primes,
pm must be raised to an even power, since pmalso divides x. As x and y are co-prime, x2and y2are also co-prime
(Ilinois University), which mean they share no common factors. This means that all prime factors raised to their
respective powers, piqi, must divide x2 fully, indicating that all qi must be even. However, gsis odd, which is a
contradiction.

Hence, by proof by contradiction, the statement that “vVk is rational” is absurd, so vk must be irrational, which
confirms that a + bvk is irrational.



2.2 — Basic Arithmetic Operations on a + bvk

Addition & Subtraction
Addition and subtraction on numbers in the form a + bk are very straightforward, just like normal integers:

(ay + byVk) + (ay + byVk) + .. +(an + byvk) = (a; + az+...+ap) + (by + bo+ ... +b)Vk
(a3 + byVk) - (ag + bovk) - - (an + bpVk) =(ay — ay—...—ay) + (by — by—...—b)Vk

We can see that when adding or subtracting two numbers in this form, a number in the same form is obtained.
Hence, the set of numbers in the form a + bVk is closed under addition (provided that (a; + a,+...+a,), (b; +
b,+ ...+b,) # 0) and subtraction (provided that (a; — a,— ... —ay), (b — b,— ... —b,,) # 0). Furthermore, this
also shows that if one wants to find two or more numbers in the form a + bvk that add or subtract to give a
number in same form with a and b given, they can compare coefficients to form an under-specified system of
linear equations (only 1 linear equation in this case), which has infinite solutions.

Multiplication
Similarly, when multiplying two numbers in this form, a number in the same form is obtained:

(ay + byVk) x (ay + byvk) = (ajay + bybok) + (arb, + ab)Vk

As this number is also in the form a + bVk, since ay, by, a,, by, €7, a = (a;a, + b1by) € Z and b = (a;b, +
a,b;) € Z. Thus, one can deduce that no matter how many times a number in this form is multiplied by another
number in the same form, a number of the same form is always obtained, i.e. the set of numbers in the form a +

bVk is closed under multiplication as well.

Division
On the other hand, the nature of these numbers is a little more complicated with division:

(a1+b1\/_) (a1+b1\/_)(a2 bz\/—) (a1a2—b1b2k)+(a2b1—a1b2)\/E_(a1a2—b1b2k) (azby— a1b2)\/’_
(a2+b2\/_) (a22 bz k) (azz_bzzk) (azz—bzzk) (azz bz k)

(ajaz—bybyk) (azbi—aib,)

(azz—bzzk) ! (azz—bzzk)
€ Z; when these former two expressions are integers, it gives rise to factors of a; + b;Vk that are also numbers
in the same form. Let us call these numbers the irrational divisors or IDs.

However, for the sake of this exploration, we are only interested in integers, i.e. when

Finding the IDs

Let us say the number we want to find the IDs of m + nvk. By definition, ( :\/P) (ay + byVk),so (m +nvk) =

(az + bZ\/E) (al + blx/E) = (aya, + byb,k) + (a,b, + a,b;)Vk. If we compare coefficients, we obtain 1.1 and
1.2.

a1a2 + kb1b2 = m (11)

a1b2 + a2b1 =n (12)

These 2 equations represent a system of linear Diophantine equations. One possible way to solve this system of
these equations would be to use trial-and-error, but it would be very inefficient, since we would have to then go
through every possible combination for ai, az, by, and b; to find possible solutions. Finding a general solution for
this system of linear Diophantine equations (i.e. finding a general solution for all the IDs of m + nvk) requires
field theory, which is beyond the level of mathematics in this exploration. Nonetheless, as it is too hard to solve
these equations, we could perhaps ask a simpler question, namely when k specified. Thus, let us examine the
simplest case where k = 2 (i.e. m + nv/2). We want to know whether m + nv/2 can always be factorised, and to
determine this, we need to familiarise ourselves with the concept of the norm.



For a number m + nv/2, we define its norm to be N(m + nv2) = (m + nv/2) (m — n\/f) =m?-2neZ IfX =
a+bvV2 and Y = ¢ + dv/2, then we can verify that N(XY) = N(X)N(Y), which is known as the multiplicative

2
property, since as N(XY) = (ac + 2bd)? — ((ad + bc)\/i) = a?c? + 4b?d? — 2a*d* — 2b%*c? = (a®—

2b?)(c? — 2d?) = N(X)N(Y) (Cornell University). Moreover, when N(X) = +1, we call X a unit (analogous to 1 in
the set of positive integers).

Therefore, let us first look at the case when N(X) = +1, i.e. when a? — 2b? = +1. If X = PQ, then N(PQ) =
N(P)N(Q) = %1, so N(P) = £1 and N(Q) = £1. This means that all the pair of integer solutions (t,s) to the
equation a? — 2b% = +1 form a number t + sv/2 that consists of IDs whose integer term and coefficient of v2
also satisfy the same equation. Because a? — 2b? = 41 is a Pell’s equation that has infinite integer solutions (The
IMO Compendium Group, 2007), t + sv2 must have an infinite number of IDs. E.g., for the case when a? — 2b% =
1, a few solutions are (1,1), (3,2), and (7,5). Therefore, if we want to find the IDs of 1 + V2 for example, we know
it has infinite IDs. If we test this out for a few factors using the solutions (3,2), and (7,5), we see that

((31:2@)=(—1 ++/2) and ((71:5\/\2)=(3 — 2v/2), which are indeed numbers in the desired form.

Another case would be when N(X) = 4j, where j > 2,i.e. a® — 2b? = 4j

1. Ifjis prime then, without loss of generality, N(P) = +1 and N(Q) = +j. By finding solutions to a? — 2b? = 4j
or +1 and forming a number in the same form, we could determine the IDs of the original number; by dividing
the original number by its IDs, other IDs could be determined.

2. [Ifjis composite then, without loss of generality, N(P) = +f; and N(Q) = % f,, where f;and f; are two arbitrary
factors. Like above, by finding solutions to a? — 2b? = 4f; or %, and forming a number in the same form,
we could determine the IDs of the original number; by dividing the original number by its IDs, other factors
could be formed. Nonetheless, it is important to note that a®> — 2b? = +f; or +f, does not always has integer
solutions, as some Pell-type equations such a? — 2b? = 10 do not have integer solutions (this was verified
using Wolfram Alpha).

For instance, if j = 3, then we need to find solutions to a? — 2b? = +3 or +1. Let us look at a? — 2b? = 43 (since
we have already looked at a? — 2b? = +1). A few solutions of this Pell-type equation are (1,-1), (17,-12), and

(41,-29). Therefore, 1 — V2 has infinite IDs, including 17 — 12v2 and 41 — 292, as %z(—7 - 5\/7) and
(1+v2)

m=(17 + 12\/5), which are indeed numbers in the desired form.

Moreover, from our observations above, we now know that the number m + nv2 does not necessarily have
factors, meaning that the set of numbers in the form m + nV2 is not closed under division. If we extend these

observations, it is likely that the set of numbers in the form m + nvk is also not closed under division, but we
cannot be certain about this assertion, since we have not proved this.

2.3 - Positive integer powers of a + bvk
Let us say that (a + b\/lz)n = a,, + b,Vk, where n is a positive integer. If we take the binomial expansion of

n
(a + b\/%) , the result is quite remarkable because we always obtain a number in the same form:

Ifnis odd:
(a+bVE)" = (Na™ + (a1 (bVE) + (B)am2(bVE) +...+(,")a(bVE)" " + (D) (bVE)" =

nn-—1 nn-—1 11 11
(a" + (%) a™ ?kb*+...+ (—( 5 )) ab"‘lkin_i) + (nan-lb 4ot bnkin_i) Vk

Ifn is even:
nn-—1 n nn—1
(a" + <¥) a %kb*+... +b"k7) + (na"‘lb + (%

1 1
- ) abn-lkin‘Z) Vk



By inspection, as a, b, k, n € Z, we can say the set of numbers in the form m + nVk is closed under exponentiation
(where the exponent is a positive integer). Let us carry out an example. Ifa =1, b =1,k = 2,and n = 3,

(1 + \/7)3 =1+ 3v2 + 6 + 22 = 7 + 5v2, which is indeed a number in the same form.

Observations

n
Expanding (a + b\/E) using the binomial theorem is one method for finding the values a,, and b,,. However,
what if we want to directly relate the values a,, and b,, to a and b? If we make some further observations, we can
find recurrence relations for the values a, and b,,.

aq + bl\/E

1++2

2+2

3++2

1+2V2

2+2V2

3+2V2
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2+3V2
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Figure 1.1 - A table to show the observations of (a + b\/E)

n
(a1 + bl\/i) an
1+2 1
3+2V2 3
7+5v2 7
(Apy +2by_1) + (ay_q + by_) V2 An-y + 2byy
242 2
6+ 4v2 6
20 + 14v2 20
(2ay_1 + 2by_y) + (@yq + 2b,_ ) V2 2Gn_1 +2by
3+42 3
11+ 6v2 11
45 4 29v2 45
(Bay_q +2by_) + (ay_; +3b,_)V2  3an_1+2by
1422 1
9+ 442 9
25 4222 25
((ln_1 + 4‘bn—1) + (Zan_l ar bn—l) \/E Ay + 4bn—1
2+ 22 2
12 +8V2 12
56 + 40V2 56
(2a,_1 + 4by_y) + (2ay_y + 2b,_ ) V2 = 28y_g + 4Dy
3+ 212 3
17 + 122 17
99 + 70vV2 99
Bay_y + 4b,_1) + (2a,_; +3b,_) V2  3au_; +4b,y
1+3V2 1
19 + 642 19
55 + 632 55
(ay_y + 6by_y) + Ba,_y +b,_)V2 An-q +6b,_q
2432 2
22+ 122 22
116 + 90v2 116

(2ay_4 + 6by_y) + Ba,_y + 2b,_) V2  2Gn_q+6by_y

b, Minimal polynomial
(@n X% + Brx +Vn)
1 x?—2x—-1
x?—6x+1
x2—14x -1
Ay + by x2—=2a,x +yl
2 x?—4x+1
4 x2—12x+1
14 x2—40x +1
Ap_q +2b,_, x2 —2a,x +yl
1 x?2—6x+7
6 x?—22x+ 49
29 x? —90x + 343
QAp_1+ 3b,_, x2—2a,x +yl
2 x?2—2x—7
4 x?—18x + 49
22 x? — 50x + 343
2ay_q + by_y x2 —2a,x +yl
2 x2—4x+7
8 x? —24x + 49
40 x% —112x + 343
2a,_, + 2b,_, x2 = 2a,x + y
2 x?—6x+1
12 x%—34x+1
70 x? —198x + 343
2a, 1 +3b,_, x? = 2a,x +y!
3 x?—2x—17
6 x? —38x + 289
63 x% —110x + 4913
3a,_1+ b,y x2—2a,x +yl
3 x?—4x — 14
12 x? — 44x + 196
90 x% —232x — 2744
3a,; +2b,_, x2 —2a,x +y}

Ay
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-2a,
-24
-112

n

Y1
49
343
"
-7
49
343

n

)4t

49
343

)41

n

£
-17

289
4913

n

£
-14

196
2744

We can clearly now see a pattern for both the values for a,, and b, as a,, = a,a,,_1 + 2b1b,,_1 and b,, = b;a,,_, +
a, b,_1, but we cannot assume that this is true for other numbers where k is different, and/or a and/or b are
negative. So, we have to continue making observations for different values and signs.



Figure 1.1 (continued)

a, + blx/E n (a1 + bl\/ﬁ)" a, b, Minimal polynomial a, Bn Yn
(@nX* + BnXx +¥n)
1 1++3 1 1 x2 —2x — 2 1 -2 -2
2 4423 4 2 x?—8x+4 1 -8 4
1++3 3 10+ 6V3 10 6 x?—20x -8 1 -20 -8
n (a,_y +3b,_1) + (ay_y + by_1) V3 Qn—y + 3bpy Any + bpy x% = 2a,x +yf 1 -2a, "
1 2443 2 1 x2 —4x+1 1 -4 1
2+43 2 7443 7 4 x?—14x + 1 1 -14 1
3 26 +15V3 26 15 X2 —52x + 1 1 -52 1
N 2ay_; +3by_1) + @y +2b, ) V3  2an 1 +3byy  any +2b, x% = 2a,x + 7] 1 -2ay, 128
1 1+2V3 1 2 x2—2x—11 1 2 -11
2 13 + 43 13 4 x2 — 26x + 121 1 -26 121
1+2V3 3 37 +30V3 37 30 x2 — 74x — 1331 1 -74 -1331
n (ayyq + 6b,_y) + (2a,_; + b,_) V3 Qpq + 6byy 20,1+ by x% = 2a,x + 97 1 -2a, 148
1 2+2V3 2 2 x%2—4x—8 1 -4 8
2 16 + 8v3 16 8 x2 —32x + 64 1 -32 64
2423 3 80 + 483 80 48 x2 —160x — 512 1 -160 -512
n o (2a, 4+ 6b, 1)+ Qay 4 +2b, )V3 2@y +6byy 2@y, +2by, x* = 2ayx +yf 1 -2a, 1Zh
1 1+3V3 1 3 x%—2x—26 1 4 -26
2 28+ 63 28 6 x? —56x + 676 1 -56 676
1+3V3 3 82 +90V3 82 90 x2 — 164x — 17576 1 -164 —-17576
n (ay_q +9b,_1) + Ba,_, + b,_) V3 Ay + 9Dy y 3a,-1+bpq x% = 2a,x + 97 1 -2a, "

From Figure 1.1, we realise we can modify our recurrence relation for a, (the table also shows that the recurrence
relation for b,, stays the same, since it is independent of the value of k) to a,, = a,a,,_; + kb1b,,_1. For example,

suppose we want to find the values a4 and by of (15 + 9\/ﬁ)4 = a4 + b,V11.If we know a3 and b3, we should be

able to calculate a, and b, using the recurrence relations for a,, and b,,. a; = 43470 and b; = 14094, so a, =
15 X% 43470+ 11 X 9 x 14094 = 2,047,356 and b, = 15 X 14094 + 9 x 43470 = 602640, which are indeed the

values for a, and b, of (15 + 9\/ﬁ)4.

If we carry out the same process for a and/or b being a negative integer, we can figure out the recurrence
relations for 4 general cases, which are in fact the same:

b1€ Z+ b1€ /A
aeZ* Ay, = a1ap_q1 + kbiby_4
aez” bp = biay—1 + aybp1

Proving these recursions using induction
These recurrences are based on mere observation, so in order to completely validate them we must prove them.
One way to do this is by using proof by induction:

1. Letus call the statements a,, = a,a,,_1 + kb, b,,_1 and b,, = bya,,_1 + a,b,,_1 A(n) and B(n) respectively.
2. Leta, = sand b; = t, i.e. consider the number s + tvk.

Base Case:

2
Forn =2, (s+t\/E) = (s% + kt?) + (2st)Vk,so a, = s® + kt? and b, = 2st
Also,a, =sxXs+ktxt=s?+kt?andb, =t Xs+sXt=2st

Therefore, A(n) and B(n) are true for n=2.



Assume that A(n) and B(n) are true for n=m:
Am = A1 + kbiby_qand by, = bia,_1 + a1bp_q-

We are required to prove that if A(n) and B(n) are true for n=m, then A(n) and B(n) are true for n=m+1. Thus,
we are working towards:

A1 = Ay + kb by, and by 1 = biay, + a1by,.

We know that (s + t\/F)m = a,, + by Vk. So,

(s+tvE)™ = (s + V&) (s + tVE) = (ay + buVE) (5 + tVE) = (@ + kthy) + (tay + shy)VE.

A1 = SAy, + ktby, = ayay, + kb by, and by, 1 = ta,, + sby, = biay, + a1by,.
Therefore, A(m+1) and B(m+1) are true.

Henceforth, by the principle of mathematical induction, if A(n) and B(n) are true, then A(n+1) and B(n+1) are
also true, and because A(2) and B(2) are true, A(n) and B(n) are true for alln > 2.

Solving simultaneous recurrence relations.

Now that we have proved that A(n) and B(n) are true foralln > 2 (A(1) and B(1) are given), we can solve them
simultaneously, as we have a system of two linear first order recurrence relations. Solving these recurrence
relations, we obtain to the following solutions:

@ = (a1 + bl\/E)n + (a1 - bl\/F)n

2
_ (ay +byVE)" = (a, — byVk)"

5
Let us carry out an example where we want to find (5 + 5\/7) . From the solutions above:

(5+5v7)°+(5-5v7)°
as = 2

= 987500

_ (5+5v7)°~(5-5v7)°
=

b 77

= 387500,

which are indeed the values for as and bs for (5 + 5\/7)5 .

By looking at these solutions for the recurrence relations, we realise that they make sense, since a,, eliminates
all the irrational terms (including v/7) and divides through by 2, since the rational numbers are doubled.
Similarly, b, eliminates all the rational terms and divides through by 2v/7 since the irrational numbers are
doubled and b,, does not include v/7 . As mathematicians, we are relieved as we can corroborate that the binomial
expansion is the fastest way to calculate (a + b\/F)” - the solutions for the recurrence relations for a,, and b,
themselves include two terms in the form (a + b\/F)n, which means that it takes exponentially more time to find
a, and b,, relative to using binomial expansion.

2.4 - The minimal polynomial of a + bv'k

The last four columns of Figure 1.1 show the minimal polynomial of a + bv/k, which is the unique, lowest degree
polynomial with integer coefficients (including the term independent of the variable) that has a + bvk as one of
its roots. Additionally, the coefficient of the highest degree term is required to be 1.



The first observation I made from Figure 1.1 was that all the coefficients of the all the terms of a,x? + B,x + ¥,
were integers. Also, for every single observation, the minimal polynomial of (a + b\/E)n = a, + byVk was x? —

2a,x + yI', wherey; is the constant term of the minimal polynomial of a; + b;vVk. We can prove these
observations using the quadratic formula and comparing coefficients:

Proving these observations
The quadratic formula is:

—f £ /B? — day

2a

X =

In our case a = 1 (by definition) and x = a + bv/k. So, by substitution,

at b= LRE B L Ty

2 X

Comparing coefficients, we obtain:

- 1
a= Z—Bandb\/_= ;,/32—4)/

Then, solving for 5, we obtain:

B =—2a(Pn =—2a,)

Also, solving for y, we obtain:

2bVk = /B2 — 4y
4b%k = p? — 4y
4b%k = (—2a)* — 4y
4y = 4a® — 4b%k
y = a® = b*k (ya = ag — kb;})

However, in my observation we saw that y,, = y{*. So, either my observation is incorrect or both of them are
equivalent. So, let us try to prove that both of them are identical.

(a1 + b;vE) " (a, — byVk)" = (an + byVk)(ay — byVk) =

yi = (af — kb#)" = [(al + b1Vk)(a1 - ble)]n =
2 _kb? =y,
n n n

a

Therefore, we have proved yJ* and y,, are interchangeable expressions, meaning that x? — 2a,, + yJ' = x? —
2a, + (a,? — kb,?) is a valid expression for the minimal polynomial of a,, + b, Vk.

Also, since a,,, b€ Z, —2a,, a,> — kb,?€ Z, so all the coefficients of the all the terms of a,,x? + 8,x + ¥,, must be
integers, which explains the first observation I made. From deduction, we also see that the converse is true (i.e.
if the minimal polynomial has integer coefficients, a,, b, € Z).

2.5 - Negative integer powers of a + bk

While a + bVk raised to a positive integer power always guarantees a number in the desired form (i.e. when a,,

and b,, are integer values), (a + b\/E)_n, where n € Z*, does not necessarily do the same.



-n 1 1 an—bpVk an—bpVk a b a -b
a+ bvk = = = n__n =2 1 — t_— —" _—+kand == -
( + ) (a+ b\/;)” ant+bpVk  (ap+bpVk)(an-bpVk)  aZ-kb?  af-kb?  aZ-kb? aZ-kb?’ ai—kb?

are not always integers. This is quite an interesting problem, but we can actually solve this problem by using

certain properties of minimal polynomials that we investigated above (which is why I have put this section after
Part 2.5 and not Part 2.4).

From Part 2.4, we have proved that the number (a + b\/E)n is the root of x? — B, x + y, = 0 (where S, y,,€ Z).

- 2
As we know that (a + b\/E) "= m, we can deduce that this number is the root of (%) — Bn (%) +y,=0,
which is equivalent to x? — %x + yi = 0. We know that if a, be Z, the minimal polynomial must have integer

coefficients (the converse is also true), implying that y,, must divide 8, and 1. Therefore, by inspection, we can
see that the only possible values for y,, can be +1. However, since y{* = y,,, ¥{ = 1, so y; = 1. Therefore,
asy; = af — kb, whenever a? — kb = +1,a,? — kb? = +1and (a + b\/F)_n equals a number in the desired
form for all n € Z*.

Coincidently, a — kb;? = +1is Pell’s equation, which we have already met above. Nonetheless, solving this

equation using methods such as continued fractions are beyond the scope of this exploration, so for now I will
just state the smallest integer solutions or the fundamental solutions to Pell’s equation for k < 10.

Figure 1.2a - A table to show the fundamental solutions for a? — kb#? = 1

k a, b,
1 - -
2 +3 12
3 12 +1
4 - -
5 +9 +4
6 +5 12
7 18 3
8 +3 +1
9 - -
10 +19 16
Figure 1.2b - A table to show the fundamental solutions for a? — kb? = —1
k a, b,
1 - -
2 +1 +1
3
4 - -
5 +2 +1
6
7 - -
8 - -
9 - -
10 +3 +1



Therefore, if we take a random number m + nvk and raise it to a negative integer power, it will either never be
anumber in the desired form or always be a number in the desired form, depending on whether m? — kn? = +1.

For example, if we take 15 + 22v/6, 152 — 6 x 22% = —2679 # +1, meaning that if we take (15 + 22\/6)_n, it
will never equal a number in the desired form. However, if we take 19 + 6v/10 on the other hand, 192 —
10 X 62 = 1, implying that (19 + 6V 10)_n, it will always equal a number in the desired form. E.g. for n =

7, (19 + 6V 10)_7 = 56830852179 — 1800311620210 which is indeed a number m + nvk, where m and n are
non-zero integers.

Moreover, we can also conclude that m + nvk is closed under exponentiation (where the exponent is a negative
integer) if and only if m? — kn? = +1 has integer solutions.

3.1 - Applications of the observations made
Although it may seem unlikely at first, certain properties of a + bvk have practical purposes. Proving that we

only obtain numbers in the desired form for (a + b\/E) " when Pell’s equation is satisfied can clearly be applied
to show the infinite nature of the integer solutions. In other words, there exists a bijection between the solutions
to the problem [ attempted to solve in Part 2.5 and the solutions of Pell’s equation, which is quite beautiful
because it also elucidates an intuitive way in which one can generate all the integers solutions to Pell’s equation!

Additionally, the set of numbers in form a + bVk is closed linked to group theory as well. Even though numbers
in the form a + bVk appear similar superficially, understanding that this set of numbers do not form groups and
rings under the basic operations and exponentiation allows mathematicians to comprehend the asymmetry that
also exists between them.

3.2 - Conclusion

Finding subtle relationships between different numbers of this same form is an epitome of the connection,
beauty, and mystery that lies within number theory and mathematics. Moreover, this essay has shed light upon
the fact that any recognisable pattern can generally be explained using mathematics.

To my fellow mathematicians, [ hope further questions are asked. Do these numbers act similarly if we take any
nth root? What if we extend the realm of these numbers to the real and complex plane? What happens when k is
a non-square negative integer, and when a and b are complex numbers? Are there any more fascinating links?
The questions that can be asked are uncountably infinite...
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