A very hairy principle

One of the most engaging components of maths, in my opinion, is its difference to all
other subjects. A mathematical proof is a very different thing to a scientific proof. In
scientific research, evidence is the foundation on which theories and explanations for
certain phenomena are built. Observations and practical results are gathered, ideas
and theories are suggested, all of which point towards an answer - but there is no
way of saying for certain that this conclusion is correct.

Maths on the other hand, is certain. A proof in
maths cannot be argued with, Pythagoras’s
theorem is not an opinion, but a fundamental
law that has been proven beyond any doubt and |
must be obeyed (yes, even in hyperbolic
geometry!). It is for this reason, that I find
mathematical theories like pigeonhole principle
so interesting - the way that they are able to
justify answers to questions beyond any
contradiction or argument, without the need for
unholy quantities of evidence and research.

The pigeonhole principle states that if n items are put into m containers, with there
being more items than containers, then at least one container must contain more
than one item. | would like to be able to generalise this statement into a
mathematical equation, but the maths is so hairy and confusing that | decided to
leave that detail to the interested reader.
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with one of the pairs of numbers that sum to 15. We are allowed to draw out six
numbers. This means that these six integers will need to be sorted into the five
containers - therefore one container must have 2 numbers in it. And there you have
it, we are guaranteed to have at least a set of a pair of numbers summing to fifteen!

Now this sounds pretty easy - obvious even - but it can give rise to some pretty fun
results. For example, if the population of London is greater than the maximum
number of hairs present on a person’s head then the principle requires there to be at
least two people with the same number of hairs on their head. This makes sense if
we consider each person in London having a different number of hairs, say the first
person has zero, the next one, the next two and so on. If we continue this up until the
maximum hairs we will find that we do not have enough different degrees of
hairiness to account for everyone. Therefore, at least two people must have the
same number of hairs on their head. What we have done is created - in essence - a



pigeon hole for each possible number of hairs, and have found that we have too
many people to give each one of them their own hole. Now going back to my original
point, there is no large scale investigation commencing in London to count the
number of hairs on every person’s head. Nor will there ever be. The mathematical
proof provided by this principle has made this sort of survey completely redundant.

Pigeonhole principle is commonly called Dirichlet’'s box
principle after Peter Dirichlet who developed the idea in
1834. Initially, Dirichlet used the metaphor of distributing
pearls among drawers when explaining the principle. Now
we use the rather old fashioned ‘pigeonhole’, in the sense of
an open space in a wall for storing papers. When the term
morphed into pigeonhole principle is hazy, but the quirk of
the name has meant that the literal translation of the word
‘pigeon hole’ has found its way into the German translation
‘Taubenschlagprizip’ - meaning dovecote principle. In all
honesty, | prefer the idea of actual pigeons nesting in boxes
when visualising the principle.

My initial issue with pigeonhole principle was that | just could
not see the point in it. Like a lot of pure maths, it seemed to have no connections to
real life and it seemed mind bending to me that so much time and effort had been
put into something so abstract. However, what | think | was missing was that where
pure maths discovers, application soon follows. Take group theory, which has an
integral role in quantum mechanics. Or topology - which has formed a foundation
from which string theory was built. Even pigeonhole principle. During a recent maths
club meeting, we discussed the applications of this theory in social distancing for
coronavirus. If there is a floor or area 10m”2, this can be broken down into square
blocks 1m by 1m. If each person is to have their own square block, we know that if
more than 10 people are in this area then there must be at least 2 people in one
meter squared block. This can be used to work out how many people can safely fit
into a certain room, without people having to pop each other’s social distancing
bubble. All in all, what makes pure maths so exciting is that no-one really knows
what problem they might be solving. It comes back to that fundamental part of being
human, our need to invent and be creative before understanding and application kick
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by 3cm piece of paper into nine 1cm by 1cm
boxes, and we know that the diagonal of a one
centimeter by one centimeter square is root 2
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If we are to place the 10 points among these boxes, we know that one 1cm by 1cm
square will contain at least two points. The furthest away from one another these




points can be is root 2 centimeters, therefore we can conclude that there will be two
points less than or equal to root 2 centimeters apart.

The full list of beautiful problems involving this theory is too large to detail here, but |
thought | would leave you with one of my favourites. At a business meeting, no one
shakes their own hand and no one shakes another's hand more than once. Prove
that there are two people who have shaken hands the same number of times. Let’s
first consider just five people. Somebody in this group could shake nobody’s hand,
one person’s, two, three or four people’s hands. Therefore there are five possibilities
- or pigeon holes - that somebody can fall into. However, if one person shakes
nobody’s hand, then it is impossible for someone else to have shaken four people’s
hands. Because of this, we can say that shaking zero hands, and shaking four hands
are mutually exclusive! This leaves us with only four possibilities. Four pigeon holes,
five people. To write it algebraically, we would have n people and n - 1 categories.
This means we can conclude that two people must have shaken the same number of
hands.

In conclusion, | hope | have been able to pass on a portion of my interest in pigeon
hole principle. It is the elegant and succinct nature of these ideas that make me
enjoy maths to the extent that | do. | wish all areas of life could be explained and
proven to the extent that mathematical proofs are capable of - although sadly | think
that is a satisfaction reserved only for mathematicians.
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