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I have never done anything "useful". No discovery of mine has made, or is likely to make, directly or indirectly, for good or ill, the least difference to 
the amenity of the world. 

- G. H. Hardy, a pure mathematician, who enjoyed tangoing with number theory 
 
Perhaps for most people, numbers are just for arithmetic, besides that, why care? 
 
2000 years ago, Julius Caesar noticed the importance of security in military communications, so he 
encoded his messages by shifting each letter by a certain amount. For example, Caesar’s last words in 
plaintext: “You too, Brutus?”, all shifted by 8 would become the cipher: “Gwc bww, Jzcbca?”, making it 
incomprehensible to anyone else. 
 
Such a system is known as a symmetric cryptosystem, as the receiver and sender both have the same 
information regarding the encryption. Namely, both of them can encrypt and decrypt messages. In this 
case, Caesar (sender) and his general (receiver) would both have known the secret of shifting by 8 letters 
according to Caesar’s ring (figure 1).  Such crucial information that’s kept secret to decode the message 
is known as a private key, while other public information is called a public key. 
 
However, a person could, by trying at most all the 25 possible “shifting values”, crack Caesar’s cipher using only pen and paper. 
Generally, there are other problems for Symmetric encryptions. As, Caesar would need to meet each person on his contact list and 
agree on a unique shifting value. What if he wants to speak securely to millions through a social media?  
 
Cryptology has evolved since Caesar’s time. After World War 2, the decryption work done on Enigma (a diligent symmetric 
cryptography machine) brought more confidence in using machines to process information rather than just human brains. The use of 
Computers to crack code, rapidly became common due to their promising calculational power. Old encryptions became vulnerable. 
 
 
 

Caesar’s ring 
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Therefore, in 1976, Diffie and Hellman introduced the general concept of asymmetric encryption. It allows encryptions taking place 
without a first meeting. Instead, a one-way trapdoor encryption is used in most asymmetric systems, so that only the receiver can 
easily decrypt the message. Diffie and Hellman have also published a specific asymmetric encryption protocol called the Diffie-
Hellman Key Exchange. This method helps the sender and the receiver to agree on a private key from distance in secret, for the use 
in future encrypted communications.  
 

A cryptography model (figure 2) usually involves three fellows: Alice, the sender; Bob, the receiver; and Eddy, the eavesdropper 
who can hear anything in the communication channel (These names will be used later). Encryptions are needed so that Eddy would 
not be able to understand the message that’s passing through the channel. 
 
Figure 3 demonstrates how Diffie-Hellman Key Exchange operates on integer multiplication. 
 

Alice Bob 
Eddy send or receive send or receive 

eavesdropping 

Model of communication  
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Even without knowing a, Bob can get the same private key as Alice (372), since (xa)b=(xb)a and Bob knows xa and b. Yet for Eddy to find 
the private key, he would have to try all the possible values for a and b, so more computation is needed compare to Bob and Alice 
who just need to do multiplication. If instead of using integer multiplication, Alice and Bob operates on other algebraic systems 
(more precisely, cyclic groups), then even more computational power could be required for Eddy to crack the system.  
 
The most effective asymmetric encryptions are formed based on unsolved maths problems, and by choosing the right question, an 
asymmetric cryptosystem can be constructed to encrypt all messages (rather than just exchanging a private key and carrying on with 
a symmetric system). 

Alice 

Diffie-Hellman Key Exchange 

Eddy Bob 

1.Choose an integer x=3, send it! 2.Receive x=3 from the channel. 

3.Choose a=8, send out xa=38=6561 4.Receive xa=6561 from the channel. 

5.Choose b=9, send out xb=39=19683 6.Receive xb=19683 from the channel. 

7.Compute (xa)b=xab= (6561)9=x72 
as the private key. 

7.Compute (xb)a= xab= (19683)8=372 
as the private key. 

Eavesdropped x=3 from the channel. 

Eavesdropped xa=6561 from the channel. 
 

Eavesdropped xb=19683 from the channel. 
 

Notice that Eddy does not have 
direct information of a and b by 
only knowing 6561, 19683 and x=3 

Communication between Alice and Bob using the secret key 372 while Eddy is trying to find out a, b 

• all the private information is in red 
• all the public information is in blue 
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One of the most well-known asymmetric cryptosystems is based on the 
difficulty of prime factorization. It is known as the RSA-cryptosystem, 
constructed by Rivest, Shamir, Adleman in 1977. It relies on the fact that, 
multiplying two large primes can be done easily by a computer, but factorizing 
the product to find the two primes would require trying all the combination of 
known primes. Give it a try, 3983779423213 (Product of 1998949 and 1992937) is a 
product of two primes, can you factorize it quickly? Now imagine a product of 
primes with digits so long that I will ‘exceed’ my word limit if I put it here. Up 
to today, an efficient way of factorizing primes has yet to be found. 

 
 

 
RSA is so strong that even today, super computers are powerless when cracking it. Because of this, RSA was chosen to be an 
essential part of the Hypertext Transfer Protocol Secure (https), the communication protocol of the internet, that allows private 
information to be transmitted securely. Gauss (a genius mathematician) actually spent years of his life working on quick factorization 
but only made a little headway. It’s not yet proven that there is no way to obtain private key p and q from public key n, but it is true 
that it has withstood decades of attacks and none have succeeded. Because of RSA, mathematics has found another application, 
turning methods of prime generation and factorization from curious wonders into assets of security. When primes where first 
examined, it must be astonishing for the Greeks that these numbers would someday become an essential element underlies 
information security, that secret agencies are willing to develop better methods and machines to tackle problems that G H Hardy 
loved as they are “useless”. 
 

Using RSA, Bob as the receiver will decide a value n as product of two large primes p and q, such n will become part of the 
encryption and will be broadcast, so Alice can use this encryption to encrypt the numerical form of messages and send the 
cipher to Bob. However, the only mathematical way to find the inverse will require using the value of primes p and q, which 
is only known by Bob, hence Bob can easily reverse the encryption and obtain the plaintext. If Eddy ever wants to know the 
plaintext, he will have to factorize n to find out p and q and then decrypt the cipher, which is yet still very hopelessly hard to 
complete in short term. 

How RSA is related to prime factorization  
 

Rivest, Shamir and Adleman (right, middle, left) 
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All these complex encryptions were built up using logical thinking based on experience in numbers and other fields of maths. But 
while mathematics and traditional computer thrives, the discoveries in quantum physics brought a new aspect to modern 
computation methods. Soon, new types of machines will rise, and outrun the cryptosystems that we rely heavily on today.  
 
Theoretically, a quantum computers can manipulate 
different sets of data simultaneously by the 
superposition of ‘tiny’ particles, running exponentially 
faster than traditional computers. Instead of trying 
each combination of primes, a quantum computer 
can have almost all the combinations processed at 
once. The difficulties in solving prime factorization 
will no longer exist. Making current systems 
vulnerable. Hardy’s hard and “useless’ questions are 
once again needed.  
 
One candidate cryptosystem is Lattice based 
cryptosystem. A lattice is a set of points that can be 
formed by scaling given vectors; forming a field of 
points. Questions concerning relationships among 
these points can perhaps be very difficult, even for 
quantum computers. Making it a competitive candidate for quantum age.  
 
So far, all the quantum computers we have made are still extremely fragile to changes in their environments. However, just in case 
quantum computers manage to leave the lab someday, preparation is necessary. From the development of cryptography, we can 
notice the value of questioning, and how raising the right difficult question can be beneficial. The tango between encryption and 
decryption is a dance of ever-growing difficulty, the better a solver you are the harder the problem gets. 

 
And how fortunate we are, to be part of this tango. 

 
 
 

3 bits can be written into 

different binary sequence, 
but 3 quantum bits can be all 
of them at once, as each 
quantum bit is a 
superposition of 1 and 0. 

(Figure 5 shows 3 qubits, and 

Figure 6 shows 8 bits. we can 

see that 3 qubits can do the 

job of 8 bits of a traditional 
computer. In fact, by 

thinking of permutation, n 
qubit can worth 2n bits.) 
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Reference: 
 
(Figure 1) Caesar’s Ring image source 
 
(Figure 4) The photo of Rivest, Shamir and Adleman 
 
(Figure 2,3,5,6 is made by me using Word) 
 
History of Cryptography from SANS Institute 
 
Diffie-Hellman key exchange reference 
 
Public key history and RSA-cryptosystem reference 
 
My source of quantum computing 
 
Kurzgesagt video: Quantum Computers Explained – Limits of Human Technology 
 
Video about RSA cryptography explaining step by step in detail 
 
For more about RSA, this textbook covers all the foundations and a topic specified on RSA (page 280) 
 
Video about Lattice based cryptosystem 
 
 

 
The End. 


