Cryptology, A Tango of Increasing Difficulty.

7 have never done anytﬁing "usefuf‘. No di’scovery cf mine has made, or is fiﬁefy to make, afirect[y or inafirectfy, for gooc{ or ill, the least cﬁﬁ[erence to
the amem’ty of the world.
-G H. ﬂ-[ard'y, a pure mathematician, who enjoyec( tcmgoing with number tﬁeory

Perhaps for most people, numbers are just for arithmetic, besides that, why care?

. . . o - .. Caesar’s rin
2000 years ago, Julius Caesar noticed the importance of security in military communications, so he

encoded his messages by shifting each letter by a certain amount. For example, Caesar’s last words in
plaintext: “You too, Brutus?”, all shifted by 8 would become the cipher: “Gwc bww, Jzcbca?”, making it
incomprehensible to anyone else.

Such a system is known as a symmetric cryptosystem, as the receiver and sender both have the same
information regarding the encryption. Namely, both of them can encrypt and decrypt messages. In this
case, Caesar (sender) and his general (receiver) would both have known the secret of shifting by 8 letters
according to Caesar’s ring (figure 1). Such crucial information that’s kept secret to decode the message
is known as a private key, while other public information is called a public key.

However, a person could, by trying at most all the 25 possible “shifting values”, crack Caesar’s cipher using only pen and paper.
Generally, there are other problems for Symmetric encryptions. As, Caesar would need to meet each person on his contact list and
agree on a unique shifting value. What if he wants to speak securely to millions through a social media?

Cryptology has evolved since Caesar’s time. After World War 2, the decryption work done on Enigma (a diligent symmetric
cryptography machine) brought more confidence in using machines to process information rather than just human brains. The use of
Computers to crack code, rapidly became common due to their promising calculational power. Old encryptions became vulnerable.



Therefore, in 1976, Diffie and Hellman introduced the general concept of asymmetric encryption. It allows encryptions taking place
without a first meeting. Instead, a one-way trapdoor encryption is used in most asymmetric systems, so that only the receiver can
easily decrypt the message. Diffie and Hellman have also published a specific asymmetric encryption protocol called the Diffie-
Hellman Key Exchange. This method helps the sender and the receiver to agree on a private key from distance in secret, for the use
in future encrypted communications.

eavesdropping

send or receive send or receive

Model of communication

A cryptography model (figure 2) usually involves three fellows: Alice, the sender; Bob, the receiver; and Eddy, the eavesdropper
who can hear anything in the communication channel (These names will be used later). Encryptions are needed so that Eddy would
not be able to understand the message that’s passing through the channel.

Figure 3 demonstrates how Diffie-Hellman Key Exchange operates on integer multiplication.



e all the private information is in red
e allthe publicinformation is in blue

Diffie-Hellman Key Exchange

Alice Bob

2.Receive x=3 from the channel.

1.Choose an integer x=3, send it! Eavesdropped x=3 from the channel.

Eavesdropped x°=6561 from the channel. 4.Receive x°=6561 from the channel.

3.Choose a=8, send out x*=3°=6561

6.Receive x"=19683 from the channel. Eavesdropped x°=19683 from the channel. 5.Choose b=9, send out x°=3°=19683

Notice that Eddy does not have 7.Compute (x*)b=x2= (6561)°=x"2
direct information of a and b by as the private key.
only knowing 6561, 19683 and x=3

7.Compute (x°)?= x?°= (19683)8=3"2
as the private key.

Communication between Alice and Bob using the secret key 372 while Eddy is trying to find out a, b

Even without knowing a, Bob can get the same private key as Alice (372), since (x?)°=(x")? and Bob knows x® and b. Yet for Eddy to find
the private key, he would have to try all the possible values for a and b, so more computation is needed compare to Bob and Alice
who just need to do multiplication. If instead of using integer multiplication, Alice and Bob operates on other algebraic systems
(more precisely, cyclic groups), then even more computational power could be required for Eddy to crack the system.

The most effective asymmetric encryptions are formed based on unsolved maths problems, and by choosing the right question, an
asymmetric cryptosystem can be constructed to encrypt all messages (rather than just exchanging a private key and carrying on with
a symmetric system).



Rivest, “hamir and Adleman (right, middle, left)

One of the most well-known asymmetric cryptosystems is based on the
difficulty of prime factorization. It is known as the RSA-cryptosystem,
constructed by Rivest, Shamir, Adleman in 1977. It relies on the fact that,
multiplying two large primes can be done easily by a computer, but factorizing
the product to find the two primes would require trying all the combination of
known primes. Give it a try, 3983779423213 (Product of 1998949 and 1992937) is a
product of two primes, can you factorize it quickly? Now imagine a product of
primes with digits so long that | will ‘exceed’ my word limit if | put it here. Up
to today, an efficient way of factorizing primes has yet to be found.

How R°A is related to prime factorization

Using RSA, Bob as the receiver will decide a value n as product of two large primes p and q, such n will become part of the
encryption and will be broadcast, so Alice can use this encryption to encrypt the numerical form of messages and send the

cipher to Bob. However, the only mathematical way to find the inverse will require using the value of primes p and q, which
is only known by Bob, hence Bob can easily reverse the encryption and obtain the plaintext. If Eddy ever wants to know the

plaintext, he will have to factorize n to find out p and g and then decrypt the cipher, which is yet still very hopelessly hard to
complete in short term.

RSA is so strong that even today, super computers are powerless when cracking it. Because of this, RSA was chosen to be an
essential part of the Hypertext Transfer Protocol Secure (https), the communication protocol of the internet, that allows private
information to be transmitted securely. Gauss (a genius mathematician) actually spent years of his life working on quick factorization
but only made a little headway. It’s not yet proven that there is no way to obtain private key p and g from public key n, but it is true
that it has withstood decades of attacks and none have succeeded. Because of RSA, mathematics has found another application,
turning methods of prime generation and factorization from curious wonders into assets of security. When primes where first
examined, it must be astonishing for the Greeks that these numbers would someday become an essential element underlies
information security, that secret agencies are willing to develop better methods and machines to tackle problems that G H Hardy
loved as they are “useless”.



All these complex encryptions were built up using logical thinking based on experience in numbers and other fields of maths. But
while mathematics and traditional computer thrives, the discoveries in quantum physics brought a new aspect to modern
computation methods. Soon, new types of machines will rise, and outrun the cryptosystems that we rely heavily on today.

Theoretically, a quantum computers can manipulate
different sets of data simultaneously by the
superposition of ‘tiny’ particles, running exponentially
faster than traditional computers. Instead of trying
each combination of primes, a quantum computer
can have almost all the combinations processed at
once. The difficulties in solving prime factorization
will no longer exist. Making current systems
vulnerable. Hardy’s hard and “useless’ questions are
once again needed.

One candidate cryptosystem is Lattice based
cryptosystem. A lattice is a set of points that can be
formed by scaling given vectors; forming a field of
points. Questions concerning relationships among
these points can perhaps be very difficult, even for

3 bits can be written into

different binary sequence,
but 3 quantum bits can be all

ofthem at once, as each
quantum bitis a
superposition oftand o.

(Figure 5 shows 3 qubits,and
Figure 6 shows 8 bits. we can
see that 3 qubits can do the

job of 8 bits of a traditional

computer. In fact, by

thinking of permutation, n
qubit can worth 2n bits.)

guantum computers. Making it a competitive candidate for quantum age.
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So far, all the quantum computers we have made are still extremely fragile to changes in their environments. However, just in case
guantum computers manage to leave the lab someday, preparation is necessary. From the development of cryptography, we can
notice the value of questioning, and how raising the right difficult question can be beneficial. The tango between encryption and
decryption is a dance of ever-growing difficulty, the better a solver you are the harder the problem gets.

And how fortunate we are, to be part of this tango.
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(Figure 1) Caesar’s Ring image source
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(Figure 2,3,5,6 is made by me using Word)

History of Cryptography from SANS Institute
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Public key history and RSA-cryptosystem reference
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Kurzgesagt video: Quantum Computers Explained — Limits of Human Technology

Video about RSA cryptography explaining step by step in detail

For more about RSA, this textbook covers all the foundations and a topic specified on RSA (page 280)

Video about Lattice based cryptosystem

The End.



