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Curves, a Tale of Beauty, Chaos, and Science:
Curves from Euler to Schrédinger

“Any curve that has a name has a story”

— Julian Havil

Curves are everywhere. Some we have created; others nature has
constructed for us. We are all born with an understanding instinct for geometry
and the shapes that are so familiar to us all. From arches on bridges to the
parabola a ball traces as it is thrown into a basketball hoop; it may never be
truly apparent how curves have been so fundamentally ingrained within our
lives. Many curves you will see on a daily basis, perhaps in buildings or
construction, while useful are usually purely functional. However beautiful,
some curves have no uses, no way of being manipulated for real-life applications
and yet there are some on the brink of science that are not only functional in
holding together matter but perhaps will show you the beauty of maths within

science.

Firstly, what is a curve? The answer is fairly intuitive, take a moving
object and trace its course on a two-dimensional or even three-dimensional axis

and you will be left with a curve. Fundamentally, it is also possible to conceive
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that a function producing a straight line e.g., f(x) = x, is also a curve but just of
a lower order. It is in this way that we can say the definition of a curve is ‘the
image of an interval to a topological space by a continuous function’. You have

probably already encountered the most basic class of curve, algebraic curves.

Algebraic curves mainly function off sets of polynomials which are usually
defined in the form y = x . However, we can make these curves more complicated
by ascending to higher, or descending to lower, values of x. We get quadratic
curves from the main equation y = x? and to ascend to curves of higher
polynomials we increase the power of x. Say we define a bunch of graphs by the

equation y = x™ and then we ascend in values of n.
q

Letn =12, Letn=2 .,

Linear Equation Quadratic Equation



Letn =3, Letn =4,

Cubic Equation Quartic Equation

I'm sure you’ve noticed that if you look at the ends of these graphs to the
right and left they all tend either upwards or downwards. For the quadratic
graph for example or parabola it can be said as you move along the x axis (either
right or left horizontally) that the values for the gradient tend towards infinity,
(positive infinity or negative, depending on which side of the axis you go to). This
in essence 1s what makes a curve differentiable. By differentiating the equation
or function of a curve we can track its gradient as a tangent to a specific value of

x 1n the curve. This is the main basis of differentiation in calculus.

This brings us to further types of curves in which we need to understand
how to distinguish. Some curves cannot be differentiated i.e., we cannot work out
their gradient algebraically at specific points along the axis. Many of these

curves are incredibly complex as they often have fractal properties (they repeat



or iterate in a sequence as we zoom in on them) or they can be what are called

space filling curves, as they occupy the whole two-dimensional axis.

An example of one of these curves would be the Weierstrass function:
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The Weierstrass function with segments of the graph

zoomed in.

Conceived by Weierstrass in 1872 it completely redefined ideas of
graphical smoothness and what was possible with functions on a cartesian plane.
Looking back at the history, it is clear that this would have been one of the first
fractals ever discovered and studied. What makes this curve so special is that it
cannot be differentiated at any point. Interestingly enough, no matter how far you zoom
in on a segment of this curve it will never stop changing and this is why we can call it a
fractal curve as not only can we not differentiate it we are not able to see a base state for this
curve as it repeats infinitely. Take any polynomial curve for example and zoom in on a point,

eventually having zoomed in enough the curve will just appear to look like a straight line



since you have zoomed in so far it is indeterminate to a line with a constant gradient. Now
take the Weierstrass function and zoom in, there will be no point that even tends towards
becoming a straight line, in this sense we can say the function will not be monotone, this is
why we can say the curve is ‘continuous everywhere but differentiable nowhere’. The
Weierstrass function also has many applications in computing for instance as being able to
compute different levels of zoom within a certain time can be used as a performance metric

for the speed of software or hardware.

There are other curves with very functional uses especially in architecture and
engineering, take the Euler Spiral for instance which was first introduced to me through one

of my favorite books Curves for the Mathematically Curious:
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Named after the famous swiss mathematician Leonard Euler, this curve like many
others is infinite. The spiral converges into two points in which the curve is left to spiral
inwards as the curvature of the curve increases as the spiral progresses. I am left troubled as
to how to explain the mathematics of this curve to the reader. However, I should say that this

is a product of two parametric equations:

s 1
x =x(s) = f cos (—uz) du
0 2
And:
s 1
y=y(s) = f sin (—uz) du
0 2

To explain parametric equations somewhat briefly; you can take the x and y
coordinates of a point on a curve or function and plot them as functions of a third variable.
E.g:
x =x(s)andy = y(s)
This gives you your parameter s, and we can then define points on the curve as a basis
of the coordinates, (x(s), y(s)).
Excusing the maths, while there is no doubt this curve is aesthetically pleasing. Much
like the Weierstrass function however, you would be confused if you were left to assume its
practical properties. The Euler Spiral has a surprisingly large swathe of uses, from physical

diffraction computations, to transitionary curves in railroads and highways to name but a few.

Some curves within Science have a very functional purpose. Take physics for
example in which chaos theory has a profound effect, mainly in particle models of
atmospheric systems. Using chaos theory, we can see how small changes in initial conditions

can have a profound effect on the systems. The Lorenz system can be used to show how



small changes in variables can create completely different outcomes. This model can be

created using three differential equations commonly known as the Lorenz equations:

dx_ ( )
dt—ay X
dy
E—x(P—Z)—)’
dz_

dt_xy ﬁZ

Any change in the variables p, 0 or § can cause drastic changes to the system, as

shown below:

p =15 p=14 p =13

The Lorenz system can be solved for using the Lorenz attractor, that being said these
solutions are chaotic and often lead to a shape reminiscent of a butterfly. This is why the

popular name describing chaos theory ‘The butterfly effect’ came into practice.



As you can see this Lorenz Attractor solution to a

Lorenz system is very familiar to the shape of a butterfly

Going beyond chaos theory, however, curves have fundamentally changed how
physicists and chemists perceive matter. This is particularly present in quantum mechanics
where wave equations and functions are found plentifully. The discovery of the wave
function and the main basis for quantum theory is all thanks to the ingenuity of Schrodinger.
Many physicists and chemists are particularly fond of the beauty of mathematical functions
which describe certain particles, especially electrons. We can successfully describe their
properties using Schrodinger’s equations. The Bohr model of the atom is the one most people

are familiar with, a central core nucleus which is shared by protons and neutrons with



electrons orbiting around like planets and moons. However, Schrédinger was able to
fundamentally prove that this was not the case. The wave function is made up of two

fundamental parts. Schrodinger’s Equation and the wavefunction itself:

Kinetic energy

contribution Potential energy  Total energy
contribution contribution
hrd¥W o —

t+ Vix)g(x) = Eg(x)

2m_ dx?

This is the Schrodinger’s equation, in which 1 (the wavefunction) is a direct solution.

This wavefunction was first formulated over to work out the shapes of the electron orbitals of
hydrogen of which have been calculated precisely and can be described by the equation

below:

P
e wp'LZHL  (p) * Vi (9, 9)
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Interestingly enough, the wave function is plotted three-dimensionally using a

spherical polar coordinate system. In this system 7 is the radius, 6 the colatitude, and ¢ is the

azimuth.
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If we take this equation and plot it against a three-dimensional axes, we get

some fascinating and beautiful geometries:
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The shapes of 4f electron orbitals are depicted with different colours to show the

regions where the wave function has positive or negative values.

If you are interested in more mathematical curves, I would suggest looking into space
filling curves such as the Hilbert curve which I felt was too computational for this essay. I
also highly recommend the book Curves for the Mathematically Curious which initially

introduced me to curves such as the Euler Spiral and the Weierstrass Curve.

Here I leave a final curve for the reader to explore:

sin(sinx + cosy) = cos(sin xy + cos x)

In conclusion, mathematical curves can be seen to have objectively beautiful
properties. Some of them can look like real world objects, like the Lorenz Attractor and how
it looks like a butterfly. But alas there is also beauty in infinity, whether that be through the
never-ending Euler Spiral or The Weierstrass Function constantly reforming and changing as
it is magnified. Whether you see beauty in chaos or the ordered curves of polynomials. It is

truly exciting to see what further curves and geometries the further holds.
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