

In 1900, German physicist Planck broke away from the bondage of classical physics concept and deduced the empirical formula of blackbody radiation, that is, assuming that the energy of matter radiation is discontinuous, its energy can only be an integral multiple of a certain minimum energy. This theory opens up a new field of physics quantum science. According to Planck's quantum theory, scientists have obtained the smallest unit of distance in physics, Planck's length. It is determined by the relative values of gravitational constant, light speed and Planck constant. It is the smallest distance unit in physics. In this distance unit, gravity and space-time no longer exist, and quantum effect dominates. It is meaningful to measure the minimum length. The Planck length is determined by the relative values of the gravitational constant, the speed of light and the Planck constant. It is roughly equal to 1.6×10^{-35} m, or 1.6×10^{-33} cm, which is one 10^{22} times the diameter of a proton. The singularity of classical general relativity is inevitable, so there is a zero point in time and space in the standard big bang model, which gives God a place to live. But considering the uncertainty principle of quantum mechanics, some basic measures, such as length and time, are uncertain. The degree of uncertainty is determined by the Planck constant, from which the minimum quantum length can be determined, that is, the Planck length, is 10^{-33} cm, which is far less than the scale of the nucleus. It is impossible to measure any

length more accurately than this, and it is meaningless to measure a length shorter than Planck's length. Similarly, as the minimum interval of time quantum, Planck time, is 10^{-43} seconds. There is no shorter time. That is to say, we can't reduce a black hole to a mathematical point, nor can we go back to the real beginning of the big bang. Ignoring the factor of 2π and so on, the meaning of Planck mass is about the mass of a black hole with Schwarzschild radius equal to Compton wavelength. The radius of this black hole is about Planck's length. Through thought experiments, it is clarified that to imagine measuring the position of an object, we have to use the reflection of the light shining on it. If we want to measure its position with high accuracy, we must use shorter wavelength photons, which means that the energy of these photons will be higher. If the energy is high enough, in principle, they can produce black holes when they hit objects. This black hole can "swallow" photons and make the experiment fail. Through simple dimensional analysis and calculation, it can be found that when the accuracy of measuring object position reaches below Planck length, the above problems will occur. This thought experiment involves general relativity and quantum mechanics (mainly refers to Heisenberg uncertainty principle), that is to say, combining the two theories, we can't make a smaller and more accurate measurement of the position than Planck's length. Therefore, in any theory of quantum gravity combining

ing general relativity with quantum mechanics, if the time is shorter than Planck's time and the distance is less than Planck's length, our traditional labeling of time and space will completely collapse. Ignore some factors. For example, Planck time is a quantity of time. Planck time is. The Planck time unit marks the beginning of the history of the universe. Our current laws of physics cannot be explored any further. If we go forward, even Einstein's general relativity will fail. The Planck length is the distance that the beam travels in Planck time,. Among them, Newton's gravitational constant G ($6.67 \times 10^{-11} \text{Nm}^2 / \text{kg}^2$), Planck's constant h ($6.63 \times 10^{-34} \text{J} \cdot \text{s}$) and speed of light C ($3 \times 10^8 \text{m} / \text{s}$) . Share your world! I want to say I want to share my insights, And a shorter length than Planck's is meaningless. Similarly, as the minimum interval of time quantum, Planck time, is $1.38 \times 10^{-43} \text{seconds}$. There is no shorter time. That is to say, we can't reduce a black hole to a mathematical point, nor can we go back to the real beginning of the big bang. Ignoring some factors, for example, Planck mass is a mass value, according to its size to calculate the corresponding length physical quantity, we can get the conclusion that "its Schwarzschild radius is equivalent to its Compton wavelength", and such a length is called Planck length, that is, $1.6 \times 10^{-35} \text{m}^2$ square meter, according to the Planck length unit, the current observable universe size estimation value is $(7.5)4 \times 10^{26} \text{M}$) is 1.2×10^{62} times the Planck length.