
Applications of Graph Theory

I first came across the mathematical concept of Graph Theory a while ago whilst listening to ‘A Brief History of
Mathematics’, a BBC 4 podcast by mathematician Marcus du Sautoy. In one of the earlier episodes of the podcast, he
describes the story of Leonhard Euler’s solution to a popular 18th century conundrum, The Seven Bridges of
Königsburg (Figure 1). Euler's approach to solving this problem ultimately led to the origin of graph theory, which
was only one very small part of his overall contribution to the discipline of mathematics during his lifetime. Graph
theory is now seen in many real-world applications such as the London underground, circuit design and navigation
systems such as Google Maps.

Figure 1

For those not familiar with this story, in the 18th
century, the Prussian city of Königsburg was split into
four separate land masses, connected by seven
bridges. The problem was to find a way to walk across
all the bridges only once and get back to where you
had started (this is now known as an eulerian circuit in
graph theory).

In 1736 Leonard Euler went about solving this problem. He recognised that it could not be solved through using the
usual concepts of mathematics such as geometry, algebra or even the art of counting, and so set about approaching it
in a whole new manner entirely. He chose not to go with the common approach of attempting to take every possible
route until he found one that worked, but instead visualised the problem as a network, where the bridges are lettered
from to and the land masses from to . This approach of looking at the problem not in terms of measurement,𝑎 𝑔 𝐴 𝐷
but in terms of geometry of position was something that prominent mathematician, Gottfried Leibniz, had previously
sought to establish. Euler represented the separate land masses as points (vertices) and the connecting bridges as lines
(edges) joining one land mass to another. He then looked at the number of edges incident on a given vertex, or the
degree of the vertex as it is now referred to as. If we take land mass , for example, you find that there are three𝐷
bridges, or edges, joined to it. This means that it has degree three, or an odd degree. If you count the edges incident
on each other land mass, you will find that they also all have an odd number of bridges coming from them, and so
there are four odd vertices. This then formed Euler’s proof that such a path could not exist, as you would need to
begin or end the trip at any odd vertices. An odd vertex must be the start and end point of an eulerian circuit, as it
takes one edge to travel to a vertex and one to leave it, and so a vertex with an odd degree cannot be passed through
without leaving an untraversed edge, unless you start or finish with that vertex. With there only being one beginning
and one end, you can therefore only include two odd vertices at most in a trip, and only one for an eulerian circuit.
Having four odd vertices made this impossible to do without going over a bridge twice (repeating an edge or arc),
and so the conclusion was made that it could not be done.

This solution then led to the origin of the area of discrete mathematics known nowadays as graph theory. This branch
of mathematics looks at networks of points connected by lines, otherwise known as graphs, and their relations. In
graph theory, a graph is defined as a set of vertices (points or nodes) and edges (lines) that can connect the vertices.

A graph, , is a pair , where is the set with vertices as its elements, and is the set with edges (or paired𝐺 𝐺 = (𝑉, 𝐸) 𝑉 𝐸
vertices) as its elements.
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For instance, the graph with the set and set𝐺 = (𝑉, 𝐸) 𝑉: {𝑣
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would look like the graph shown in Figure 2, which is also𝐸: {𝑣
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known as the complete graph called . The pairs of vertices in the edge set represent𝐾
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the end-points of a given edge. A complete graph is a graph in which every vertex is
directly connected by a single edge to each of the other vertices, and is the𝐾

𝑛

complete graph with vertices.𝑛

The London underground network map is a good
illustration of basic graph theory being applied in
everyday life. It is an example of a topological map,
which is a type of diagram that has been simplified so
that it lacks scale, and the distances and directions can be
modified, but it still maintains the relations between
points. In the tube map, the stations are the vertices of
the graph, and the connecting railways are the edges.
Interchanges are also shown through where multiple
edges are incident on a given vertex. This way of
representing the underground network adds simplicity
and clarity through the distortion of distance and
direction, so it focuses on traversing between different
vertices rather than the geographical accuracy of the
map.

There are multiple different types of graph,
including directed graphs (digraphs) and
undirected graphs, simple graphs or planar
graphs and so on, which all have their own
different properties and applications.
Planar graphs are particularly useful when
looking at designing circuits, subways or
utility lines for example, where edges
crossing at points other than connected
vertices are a nuisance, as they are graphs
that can be drawn without any edges
crossing. A a good example of this is the complete graph (Figure 4), which is usually seen drawn with some of its𝐾
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edges intersecting at points other than at vertices. However, it can in fact be redrawn as a planar graph, known as its
planar representation. To determine whether or not a graph is planar we can use Euler's theorem for planar graphs:

Let be a connected planar graph with (number of vertices) and (number of edges).𝐺 =< 𝑉, 𝐸 > |𝑉| = 𝑣 |𝐸| = 𝑒
Let the letter be the number of regions determined by the planar embedding.𝑟

Then we can conclude that:

𝑣 − 𝑒 + 𝑟 = 2

2



This theorem is proved by method of induction, but if a we use as an example of a known planar graph (figure𝐾
4

5), the number of vertices is 4, the number of edges is 6, and there are 4 regions (including the infinite region) when
the graph is drawn as a planar representation. Substituting these values in , so we see the equation4 − 6 + 4 = 2
holds true for . If the graph is not drawn as a planar representation, the number of regions may be altered by edges𝐾
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crossing at points other than vertices.

Graphs can also have algorithms applied to them for useful applications such as to find a shortest path through a
weighted graph along its edges from one chosen vertex to another. Algorithms like these are an integral part of
applications such as Google maps and SAT NAV systems. Taking Google Maps as an example, road networks can be
modeled as huge graphs, with the roads as edges and vertices being the points where these roads intersect. Various
algorithms can be applied to these graphs to find the most direct route for example. In this instance giving the edges
of a graph values (weights or costs), such as distance or an estimated time to travel along an edge from one vertex to
another, can allow for shortest routes to be calculated. One such algorithm that is used for this is Dijkstra's algorithm,
which was originated by computer scientist Edsger W. Dijkstra in 1956. This algorithm has many variations,
however, the main function of it is to find the shortest path between any two vertices in a graph. The algorithm takes
following steps in order to achieve this:

1. Mark all vertices unvisited. Create a set of all the unvisited vertices called the unvisited set.
2. Assign to every vertex a tentative distance value (called such as it is not the final distance value): set it to zero

for the initial vertex and infinity for all other vertices. Set the initial vertex as current.
3. For the current vertex, consider all of its unvisited neighbours (adjacent vertices) and calculate their tentative

distances through the current vertex. Compare the newly calculated tentative distance to the current assigned
value (if any) and assign the smaller one to the vertex.

4. When all of the unvisited neighbours to the current vertex have been considered, mark the current vertex as
visited and remove it from the unvisited set. (A visited vertex will never be checked again)

5. If the destination vertex has been marked visited, then stop. (for the shortest path between two vertices)
6. Otherwise, select the unvisited vertex that is marked with the smallest tentative distance, set it as the new

“current vertex”, and repeat step three onwards.

These steps, which are often shown in a flow chart, find the shortest path (the path with the lowest cost) from a
source vertex to a destination vertex. In the instance of Google Maps, the graphs are huge and so looking at the
whole graph would be very time consuming, so the algorithm must prioritise the closest vertices and edges (roads
and junctions in this case) and consider them first. It does this by using a min-priority queue, which orders data in
such a way that reduces computing time. It gives each element an associated priority, resulting in the highest priority
elements being served first. In the case of Google Maps, the highest priority elements would be the fastest roads
when looking for the fastest path from one place to another.

Using the undirected graph (Figure 6) as an example of a small road
network, with the roads modelled as weighted edges and and the junctions
as vertices, let us find the shortest path from vertex to vertex . The𝑎 𝑒
weight associated with each individual edge in this case is the time it takes
to traverse the road. To use Dijkstra's algorithm by hand, it is useful to use
a table (Figure 7) to note certain information for each vertex. Although,
when used in computer applications, this process would be completed in a
different format, the principles are the same. Initially, the set of unvisited
vertices for this graph is . The source or start vertex,{𝑎, 𝑏, 𝑐, 𝑑, 𝑒,  𝑓, 𝑔, ℎ, 𝑖}
labelled , is considered first and its distance value is set to zero, whilst𝑎
that of all other vertices is set to infinite. The adjacent vertices to the
current vertex, , are then considered. These vertices are and . For ,𝑎 𝑏 ℎ 𝑏
the tentative distance through the current vertex, , is . As this𝑎 0 + 4 = 4

is the first value calculated for , it is therefore also the smallest and so is assigned to the working values section of𝑏
the table. For the other adjacent vertex, , the tentative distance is . All the unvisited neighbours to theℎ 0 + 8 = 8
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current vertex have now been considered, so is marked as visited and removed from the unvisited set. The𝑎
destination vertex has not been reached, and so the next vertex with the smallest working value, , is selected and set𝑏
as the new current vertex. The process is then repeated from step three onwards, starting with the adjacent vectors to

, until a shortest path is found from to , and this essentially forms the basis of these navigation applications.𝑏 𝑎 𝑒

To think that all these advancements, that form the foundations of systems and applications that are now so
integrated into our everyday lives, all stemmed from great mathematicians such as Leonard Euler, and his solution to
one seemingly small problem, is a tiny glimpse into the wonders of what mathematics is capable of achieving.
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