The Mathematics of Neural Networks

Opening the ‘black box’

Machine Learning. These two words are suddenly everywhere as discussions of its power
and frightening capabilities fill the media and newspapers of the world. We hear every day
about these mysterious technologies and seemingly magical algorithms that allow computers
to learn how to approach tasks better than any humans. Yet most of us just accept they exist
and move on. We collectively choose to treat the word ‘algorithm’ as a black box - as soon
as we are told something works based on an algorithm we shrug it off and assume its
fantastical mechanisms are too far beyond our intellectual reach to have any hope of
comprehending.

In this essay | intend to demystify a crucial machine learning concept - the neural network -
and prove that, although these systems rely on reasonably complicated calculus and linear
algebra, nothing more than a simple understanding of basic arithmetic and an open mind is
needed to understand the key concepts. In essence, a neural network can be thought of as
this strange black box into which we enter numbers and (after a series of mathematical
processes) receive numbers that help us answer our questions on the other side. The box is
trained iteratively until it has learned to give accurate answers for the intended question (e.g
is this photo a duck or a lion?). Let us now open this black box...

Nothing but lines, circles and numbers

Neural networks act as simpler models of how the brain functions. Inside the brain we find
neurons in a complex web that are all connected with one another at synapses. Electrical
impulses sent from nerves all around the body are fired through these neurons until they
reach some part of the brain that tells us how to react to the stimulus. Of course this is
dramatically oversimplified, but it does help give a jumping off point. Neural networks are
doing the same thing - they have a series of input signals that are sent down a web of
connections that result in a useful output being presented on another side. What is even
more wonderful is that this process consists of little more than multiplication and addition.

To better understand this, let us meet the concepts of the
weights, biases, and the nodes. My slightly crude image to
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from the top input node to the output node here, we multiply 0.5 by 2 to get 1. We do the
same with the other two input nodes and add them all together to receive the result 1.28.
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Now there are only a couple more steps to get the final number for the output node. This
node also has an associated bias, b, of 1. This bias is then added to the 1.28 giving us 2.28.
Finally, we often like to have all our results pushed between 0 and 1. This is very useful in
cases where we are determining probabilities relating to how confident a network is (for
example how likely it thinks the given input is an image of a lion as opposed to a duck) and
prevents certain results from getting too high in a way that makes computation difficult and
outputs overly biased results. In order to do this, we use an activation function. These come
in many shapes and sizes but here | have used the sigmoid function:
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Note that, for the purposes of understanding, the exact details of the function are irrelevant
as long as one notes the mapping between 0 and 1. The sigmoid function also has the
added benefit of mapping our numbers in a way that ensures small changes in the weights
and biases create small changes in the output (which will come in handy later down the
road). So, applying the sigmoid function, g(2.28), we get our final result of 0.91!
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number of output data nodes is decided by the nature of the problem to be solved. A network
with two outputs is often found in situations where the network has to decide between two
possibilities of results (e.g is the input an image of a lion or a duck?). These outputs can be
interpreted as the probability the network believes that that answer is the correct one. For
example if the output node that is being used to show the likelihood of the image being a



duck shows 0.8, then the network is 80% certain that the image was a duck. The output
node with the highest value is chosen as the final result given by the network.

Rolling down the hill

Now we have discovered how a neural network can convert numerical inputs into numerical
outputs that can then be interpreted in order to aid a computer system. However, there is a
key part of the puzzle missing: if all we are doing is adding and multiplying numbers, how
can we receive an accurate and useful answer? This becomes even more puzzling with the
information that the weights and biases of the network are often assigned completely
randomly! Would this not provide a completely random output? The answer is yes - merely
creating the network brings us nowhere closer to building our Al. This brings us to what
transforms our useless group of random weights and biases into an extremely useful tool:
gradient descent.

This is also how the concept of machine learning comes in. By using gradient descent, our
model can learn the optimal weights and biases for the network in order to solve the problem
as accurately as possible. This is a form of supervised learning - a type of machine learning
in which the model is constantly tested against a dataset and then adjusted based on its
performance. Before the training of the model, a labelled dataset will have been compiled for
this purpose (for example, a dataset of lion and duck images with the correct answer for
each one). We can then pass each example through the network and we compare the
network’s output with the intended answer to find a ‘cost’. For example, imagine we are
passing a picture of a lion through our network from earlier. We want the network to ideally
give a 1 for a lion and a 0 for a duck. If instead it has 0.4 for a lion and 0.6 for a duck, then
there is some cost associated with those values. The closer to the correct values, the lower
the cost. Our intention in gradient descent is to minimise cost (meaning a more accurate
model).

To understand how this can be done, we can imagine a
graph of cost against the value of a weight in the network
like the one to the right. In reality, we do not know what
this graph actually looks like, but we can work out the
gradient (the slope) and this can be used to traverse
down the graph to its minimum point. This is best
understood by imagining you are a ball on the slope
located at the point corresponding to the current weight *
value and the current cost of the network. Just like a ball

on a hill, we can imagine rolling down the hill until its

lowest point. At this lowest point, we discover which value for the weight allows that low cost
and, having done this to update each parameter in the model, we have achieved an accurate
network. Of course, it is extremely computationally expensive to actually simulate a ball
rolling down the ‘cost curve hill’ but the same process can be reproduced with our good
friend calculus. From our knowledge of the cost function and the arithmetic used in the
network, we can calculate partial derivatives to determine the exact gradient (or steepness)
of the cost curve for each parameter in the network. Then, with this gradient we know exactly
how much to change each weight and bias in the network in order to lower the cost. For
those more mathematically interested, this is possible because the change in the cost is




equal to the change in the parameters multiplied by the gradient. So, if we choose the
change in parameters to be the gradient times a negative number, then we ensure that the
change in cost is always negative (as this will be a negative number times a square number
and square numbers are always positive). This process is then repeated again and again
until it appears the cost has gotten as low as it can go. Now, we have a finished (and
hopefully accurate) network with finely-tuned parameters!

One concept to note is that of local minima. These exist because of the complexity of the
cost graph and will mean there are several points where it appears the cost is minimal. In the
graph shown above, there are two points marked with blue dots that appear as valleys in the
cost curve hill. If our ball started to the left of the graph it would fall into the higher valley to
the left and so will not be the best model it can be. To avoid this, when building a model,
many should be created with random starting points so that it can be certain that the full
space has been explored and the optimal model has been created.

And that’s it!

That brings us to the end of our neural network journey. There is still so much more to
explore as real models expand on these concepts in order to create all sorts of weird and
wonderful Als and for simplicity | have done away with a lot of the mathematical detail and
complexity, but | hope that this paper has provided an easy to access but in depth look into
the ‘black box’ of neural networks. Maths has a really incredible ability to turn simple
numbers into beautiful and intricate systems - and for me neural networks are a perfect
example of this.

Image references

Sigmoid graph -Everything you need to know about “Activation Functions” in Deep

learning models - Vandit Jain

Cost curve - Everything you need to know about Neural Networks and

Backpropagation — Machine Learning Easy and Fun - Gavril Ognjanovski


https://medium.com/@ognjanovski.gavril?source=post_page-----e5285bc2be3a--------------------------------

