SOLUTIONS OF THE DIOPHANTINE EQUATION

$$
x^{3}+y^{3}+z^{3}=k
$$

J. C. P. Muler and M. F. C. Woollett*.

1. In a recent paper, Mordell \dagger discusses solutions of the equation

$$
\begin{equation*}
x^{3}+y^{3}+z^{3}+w^{3}=m \tag{1}
\end{equation*}
$$

and gives an outline of available information on this equation and others derived from it. In particular he remarks " I do not know anything about the integer solutions of

$$
x^{3}+y^{3}+z^{3}=3
$$

beyond the existence of the four sets ($1,1,1$), (4, 4, -5), etc.; and it must be very difficult indeed to find out anything about any other solutions ".

At Prof. Mordell's suggestion, an attempt was made to find further solutions with the help of the electronic computer (EDSAC) at the Cambridge University Mathematical Laboratory. This paper records the results obtained during that search, which was extended to include all solutions of

$$
\begin{equation*}
x^{3}+y^{3}+z^{3}=k \tag{2}
\end{equation*}
$$

with $0 \leqslant k \leqslant 100,|z| \leqslant|y| \leqslant|x| \leqslant 3164$. No further case with $k=3$ was found; 345 primitive solutions, for which $(x, y, z)=1,|x| \leqslant 3164$ are listed below. There are also 91 derived solutions, for which $(x, y, z)>1$.
2. It is a reasonably simple task tọ program a direct trial and error search for solutions, and two such programs were prepared, one by each author. For two main reasons, the search was not confined to the case $k=3$: (i) it is clear that solutions for other values of k also have their interest, (ii) it is desirable to present a problem to the machine in such a way that solutions are produced at reasonably frequent intervals. It is also relevant to note that it takes very little longer to search for solutions with a wide range of k than to search for solutions with a single value of k.

The second point is important for the operator, since the production of an occasional solution provides a useful indication that the machine is working correctly, and at the same time tends to preserve an interest

[^0]in the computation. The limit $k \leqslant 100$ was chosen rather arbitrarily, but proved satisfactory.
3. The search is at first sight " three-dimensional", that is, x, y, z may apparently vary independently over considerable ranges of values. However, the inequality $x^{3}+y^{3}+z^{3} \leqslant 100$ is, in fact, sufficiently restrictive to ensure, for by far the greater part of the search, that at most two values of y are tested for each combination (x, z). The search is thus "twodimensional " in practice.

We must now specify the problem a little more closely. Clearly we may, without loss of generality, take

$$
\begin{equation*}
|x| \geqslant|y| \geqslant|z| \tag{3}
\end{equation*}
$$

and by changing all signs if necessary, and allowing k to lie anywhere in the range

$$
\begin{equation*}
-100 \leqslant k \leqslant 100 \tag{4}
\end{equation*}
$$

we may suppose that $x>0$. This will be assumed throughout this and the following paragraphs 3 to 8 , although in the tables we still keep $k>0$ and allow x to be negative.

Four sign combinations are now possible

$$
\begin{align*}
& (x, y, z)=(l, m, n) \tag{5.1}\\
& (x, y, z)=(l, m,-n) \tag{5.2}\\
& (x, y, z)=(l,-m, n) \tag{5.3}\\
& (x, y, z)=(l,-m,-n) \tag{5.4}
\end{align*}
$$

in which $l \geqslant m \geqslant n \geqslant 0$. We consider these cases in turn.
4. Case (5.1). Since x, y, z are all positive, while $l^{3}+m^{3}+n^{3} \leqslant 100$, it is clear that $l \leqslant 4$, and that there is a small number of solutions which were obtained by inspection.

Case (5.2). Here $100 \geqslant x^{3}+y^{3}+z^{3}=l^{3}+m^{3}-n^{3} \geqslant l^{3}$, since $m \geqslant n$. Again $l \leqslant 4$, leading to a small number of solutions, found by inspection.

Case (5.3). Here, with $100 \geqslant k=l^{3}-m^{3}+n^{3}$, there are the infinite sets of solutions ($l,-l, n$) for each $0 \leqslant n \leqslant 4$, with l taking any integer value. If we exclude these obvious sets, we may write $l \geqslant m+1$, and then

$$
100 \geqslant 3 l^{2}-3 l+1+n^{3}
$$

whence $l \leqslant 6$.
Hence, once again, we have a small number of solutions that may be found by inspection.
5. Case (5.4). There remains the final and main case

$$
\begin{equation*}
x^{3}+y^{3}+z^{3}=l^{3}-m^{3}-n^{3} \text { with } l>m \geqslant n . \tag{6}
\end{equation*}
$$

We may write $l>m$ strictly, if, as before, the infinite sets $(l,-l,-n)$ are excluded; these sets are identical with those of case (5.3), apart from a change in all signs. We now examine the ranges of values that may be taken by l, m, and n.

Firstly l is unrestricted in magnitude, as will be evident from the general cases given in §13.

Secondly $m \geqslant n$, so that
or

$$
\begin{gathered}
100 \geqslant l^{3}-2 m^{3}, \\
m \geqslant\left[\frac{1}{2}\left(l^{3}-100\right)\right]^{1 / 3},
\end{gathered}
$$

whence, on incorporating (6),

$$
\begin{equation*}
l .2^{-1 / 3} \leqslant m+1 \leqslant l, \quad l \geqslant 6 \tag{7}
\end{equation*}
$$

Thirdly $\quad 100 \geqslant l^{3}-m^{3}-n^{3} \geqslant l^{3}-(l-1)^{3}-n^{3}$
giving $\quad n^{3} \geqslant 3 l^{2}-3 l-99$ or $n \geqslant n_{0}(l)$
where $n_{0}(l)$ is a limit, positive when $l>7$ and increasing with l. Also
or

$$
\begin{gather*}
l^{3}-2 n^{3} \geqslant-100, \\
n \leqslant\left[\frac{1}{2}\left(l^{3}+100\right)\right]^{1 / 3} \tag{9}
\end{gather*}
$$

whence, finally,

$$
\begin{equation*}
\left(3 l^{2}-3 l-99\right)^{1 / 3} \leqslant n \leqslant l .2^{-1 / 3}+1, \quad l \geqslant 5 . \tag{10}
\end{equation*}
$$

6. The method used on the machine was essentially as follows. Suppose

$$
\begin{equation*}
E=l^{3}-m^{3}-n^{3} \tag{11}
\end{equation*}
$$

is known for particular values of l, m, n, restricted by (7) and (10). For the moment l is kept fixed, and the magnitude of E tested. If E exceeds 100 , we increase n by a unit; if E is less than - 100, we decrease m by a unit. In either case, the test and subsequent stages are then repeated.

If $-100 \leqslant E \leqslant 100$, a new solution has been found and is recorded, n is then increased, and the test for magnitude and subsequent stages repeated.

It remains to be shown that, apart from a finite number of cases with small l, two successive steps cannot both lie within the range $|E| \leqslant 100$. We note first that, if such a value, $|E| \leqslant 100$, is found, the next change is always an increase of a unit in n; this was arranged deliberately because $n \leqslant m$. The corresponding change in E is least when n is least. Hence the minimum step, for prescribed l, occurs when n is at its minimum value,
given by (8). The corresponding change δE, namely $\left(n_{0}+1\right)^{3}-n_{0}{ }^{3}$, exceeds 200 when l exceeds 12 , as may be seen from the following values:
$\left.\begin{array}{rrrrr}l & 10 & 11 & 12 & 13 \\ n_{0} & 6 & 7 & 7 & 8 \\ \text { Step } \delta E & 127 & 169 & 169 & 217\end{array}\right\}$

The few cases with $l \leqslant 12$, when two or more solutions can exist with the same values of both l and m, may be obtained by inspection, but were, in fact, found by one of the programs (see §7); the other program (see §8) was designed for dealing with large l and omitted the special instructions needed to cope with these solutions.
7. The two programs make use of different search plans. In one case we write $l=m+r$ and

$$
\begin{align*}
E & \equiv(m+r)^{3}-m^{3}-n^{3} \\
& =3 m^{2} r+3 m r^{2}+r^{3}-n^{3} \tag{13}
\end{align*}
$$

which is quadratic in m, cubic in r and n.
The search was made by taking $r=1,2,3, \ldots, R$ in succession; for each value of r, m started at unity, whilst n started from zero. One or other of m and n was then increased by unity, according to the sign of $E-100$, recording any solution with $|E| \leqslant 100$, this process being repeated until m reached 600 . The value of r was then increased by unity, and the process repeated, m and n again starting from 1 and 0 respectively.

The value of r was increased steadily to a final value R, chosen so that all cases with $n \leqslant 600$ were covered, that is, so that

$$
(601+R)^{3}-2(600)^{3}>100 \geqslant(600+R)^{3}-2(600)^{3}
$$

This gives $R=155$.
The changes in E consequent on changes in m or n were effected by the recording and appropriate addition of first and second differences corresponding to unit change in m, or of first, second and third differences for unit changes in n. The former depend on r, but this remains constant for each run of 600 values of m. Differences were also used to alter the starting values of quantities depending on r, when a new cycle of 600 values of m was started.

So long as $l=m+r \leqslant 12$, each change in m was combined with a fresh start at zero for n, to pick up those of the cases mentioned at the end of $\S 6$, where an increase in m and a decrease in n were simultaneously possible. When $l>12$, however, the value of n could no longer decrease as m increased steadily to 600 .

This program gave all solutions for case (5.4) with $|k| \leqslant 100$, having $m, n \leqslant 600$. A few cases with $l>600$ were thus included.
8. The second program also used differences for modifying E, but worked directly in terms of l, m, and n. For each value of l, m was started at $l-1$ and n started at $n_{0}(l-1)$, [see (8)]. The first step was to determine $n_{0}(l)$, noting that $n_{0}(l) \geqslant n_{0}(l-1)$. The general run then decreased m by unity or increased n by unity according as $E-100<$ or $\geqslant 0$; this process ceased when n exceeded m, and l was then increased by unity and the cycle recommenced. Solutions with $|E| \leqslant 100$ were printed as found.

Owing to the fact that the terms in E are cubic for all of l, m, n, the innermost cycle (that which changes m or n by unity) is a little longer than in the other program. However, the complete separation of l, m, n made it a little easier to start the search at an arbitrary value of l and to stop at any convenient larger value. This program was used up to $l=3164$.
9. The main table gives all the solutions found with $|x| \leqslant 3164$. Only primitive solutions, for which (x, y, z) have no common factor, are given. The sign of k is kept positive throughout the table, so that x may be negative.

The arrangement is to list solutions for each value of k in succession and, when k has a cubic factor, to give also the number of solutions that may be derived, up to the limit for x stated above, from solutions for earlier values of k.

The values to $|x|=1600$ have all been obtained twice from distinct runs on the machine. Above $|x|=1600$, only one run was made, as it seemed of more interest to spend time in obtaining new solutions, readily verified, rather than to make sure that no odd solution had been overlooked. In fact, just one case, with $k=100$ exactly, had been omitted on the first run.

Discussion of results.
10. The total numbers of solutions found, for successive ranges of 500 in $|x|$, are listed below

Range of \mid x		1-500	1000	1500	2000	2500	3000	Total
Solutions	Primitive	232	44	19	18	18	11	342
	Derived	49	11	9	8	7	5	89
	Total	281	55	28	26	25	16	431

There were also found three primitive and two derived solutions for $3000<|x| \leqslant 3164$.
11. Since all cubes have the form 9λ or $9 \lambda \pm 1$, the ways in which $k=9 n \pm \kappa$ can be made up depends on κ.
$k=9 n \pm 4$ is impossible, while the 27 combinations (α, β, γ) where $x=3 \lambda_{1}+\alpha, y=3 \lambda_{2}+\beta, z=3 \lambda_{3}+\gamma$, with α, β, γ, each $-1,0$, or 1 , are distributed thus

Form of k	Combinations (α, β, γ)		No. of Combinations	No. of Solutions
$9 n$	$(0,0,0)(0,1,-1)$ etc.	\ldots	7	93
$9 n \pm 1$	$(\pm 1,0,0)$ etc., $(1,1,-1)$ etc.,			
	$(1,-1,-1)$ etc.	\ldots	12	190
$9 n \pm 2$	$(1,1,0)$ etc., $(-1,-1,0)$ etc...	6	112	
$9 n \pm 3$	$(1,1,1)$ or $(-1,-1,-1)$	\ldots	2	41
				$\frac{436}{}$

The last column gives the number of solutions, among the 436 found, falling into the four categories, indicating fewer than expected for $k=9 n$ and rather more for $k=9 n \pm 2$.

The distribution within the groups is, however, highly erratic. Further sub-division, for modulus 27 or 81 , may help to account partially for this. For example, $9 n$ is composed of the three cases $27 m$ and $27 m \pm 9$. If x, y, z have the forms $9 \mu_{1}+\alpha, 9 \mu_{2}+\beta, 9 \mu_{3}+\gamma$, denoted by (α, β, γ) then $k=27 m$ is given by the forms $(\pm 3,0,0),(\pm 3, \pm 3,0),(\pm 3, \pm 3, \pm 3)$ and by $(\rho, 1,-1),(\rho,-2,2)$ and $(\rho, 4,-4)$, where $\rho=0,3$ or 6 ; counting permutations this gives 81 forms. Likewise $k=27 m+9$ is given by the forms $(\rho, 1,2),(\rho,-2,-4)$ and $(\rho, 4,-1)$; with permutations this gives 54 forms. Thus $27 m, 27 m+9,27 m+18$ occur in proportions 3:2:2. The table does not provide enough evidence to give a good test of this.
12. The paucity of solutions for $k=9 n \pm 3$ is noticeable; this covers the interesting case $k=3$ and may be made the basis of an extended and refined search in this case.

In fact, we may allow both k and x [still retaining (3)] to take either sign, but have instead the restriction that x, y, z, shall all be of the form $3 \lambda+1$. A further search along these lines is planned, with extended range of k, say $|k| \leqslant 10000$, for the reasons indicated in $\S 1$, and also in order to provide material to throw light, if possible, on some of the queries of $\S 14$.
13. Two single-parameter families of solutions have been given, respectively for $k=1$ and $k=2$. If we relax the condition (3), that

$$
\begin{array}{cccc}
|x| \geqslant|y| \geqslant|z|, \text { these may be written } \\
& x=9 t^{4} & y=-9 t^{4}+3 t & z=-9 t^{3}+1 \tag{14}\\
k=1 & x=6 t^{3}+1 & y=-6 t^{3}+1 & z=-6 t^{2}
\end{array}
$$

These give a solution for each integer value of t, positive or negative.
Both (14) and (15) can be generalized to two-parameter solutions, for values of k depending on the second parameter:

$$
\begin{array}{llll}
k=\lambda^{12} & x=9 t^{4} & y=-9 t^{4}+3 t \lambda^{3} & z=-9 t^{3} \lambda+\lambda^{4} \\
k=2 \lambda^{9} & x=6 t^{3}+\lambda^{3} & y=-6 t^{3}+\lambda^{3} & z=-6 t^{2} \lambda \tag{17}
\end{array}
$$

Neither of these contributes for $|k| \leqslant 100$, although (17) with $\lambda=2$, after removing the common factor 2 , contributes to $k=128$; e.g. (7, 1, -6) or ($85,-77,-54$).

Only nine of the 21 solutions found for $k=1$ are given by (14), whereas all eight solutions for $k=2$ are given by (15).

For $k=16$, however, although seven solutions found are derived from those for $k=2$ by doubling x, y, z, a single solution has been found ($1626,-1609,-511$), which is not given by the formula.

For $k=54$, six solutions may be derived from those for $k=2$, while three others are primitive.
14. The main query remains: (1) Are there further solutions for $k=3$? In view of the remarks of §11, and comparison with, for example, the cases $k=12,60,66,78,93$, this lack of solutions is less surprising than at first seems apparent, and the hope remains that a more refined and extended search may be successful.

Other queries that may be put are: (2) Does a solution exist for $k=2$, not given by the formula (15)? (3) Do solutions exist for the cases $k=30,33,39,42,75,84,87$, all of form $9 \lambda \pm 3$?

In connection with these values of k, it is of interest to search for solutions with $k^{\prime}=8 k$, i.e. $240,264,312$, etc.

Concerning the number of solutions found with $l \leqslant 3164$ we may ask: (4) Can an explanation be given for the irregularity of distribution of solutions with k ? In particular: (5) Why have $k=83$ and $k=90$, for example, so many as 13 and 14 solutions? The preponderance of solutions for k a cube is notable: $k=1,8,27,64$ have respectively $22,18,19,19$ primitive solutions.
[Note added in proof. An extension of the search to $a=3200$ has yielded two further solutions:

$$
\begin{aligned}
-3167^{3}+3166^{3}+311^{3} & =64 \\
3200^{3}-3168^{3}-991^{3} & =97 .]
\end{aligned}
$$

Table
Solutions of $x^{3}+y^{3}+z^{3}=k$.

[^1]Solutions of $x^{3}+y^{3}+z^{3}=k$-continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline k \& x \& y \& z \& k \& x \& y \& z \& k \& x \& y \& z

\hline \multirow[t]{7}{*}{28} \& 3 \& 1 \& 0 \& 45 \& 4 \& -3 \& 2 \& 60 \& 5 \& -4 \& -1

\hline \& -17 \& 14 \& 13 \& \& -552 \& 533 \& 256 \& \& 1202 \& -1201 \& -163

\hline \& -59 \& 56 \& 31 \& \& -2369 \& 2025 \& 1709 \& \& \& \&

\hline \& 154.1 \& -1526 \& -473 \& \& \& \& \& \& \& \&

\hline \& 2269 \& -2268 \& -249 \& 46 \& 3 \& 3 \& -2 \& 61 \& 5 \& -4 \& 0

\hline \& \& \& \& \& -29 \& 26 \& 19 \& \& -966 \& 845 \& 668

\hline \& \& \& \& \& 815 \& -758 \& -473 \& \& \& \&

\hline \multirow[t]{6}{*}{29} \& \& \& \& \& \& \& \& \& \& \&

\hline \& 4 \& -3 \& -2 \& \& \& \& \& 62 \& 3 \& 3 \& 2

\hline \& -20 \& 18 \& 13 \& 47 \& -8 \& 7 \& 6 \& \& 4 \& -1 \& -1

\hline \& 235 \& -233 \& -69 \& \& 31 \& -30 \& -14 \& \& 5 \& -4 \& 1

\hline \& \& \& \& \& 63 \& -50 \& -50 \& \& -34 \& 27 \& 27

\hline \& \& \& \& \& -141 \& 139 \& 49 \& \& -43 \& 41 \& 22

\hline \multirow[t]{3}{*}{30} \& No solu \& ion fou \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& 48 \& 31 \& -26 \& -23 \& \& -441 \& 434 \& 159

\hline \& No solu \& ion fou \& \& \& Also 4 \& rived \& utions. \& \& 2903 \& -2744 \& -1561

\hline 33 \& \& \& \& 51 \& -796 \& 659 \& 602 \& 63 \& 4 \& -1 \& 0

\hline \multirow[t]{10}{*}{34} \& 3 \& \& -1 \& \& \& \& \& \& 7 \& -6 \& -4

\hline \& 5 \& -4 \& -3 \& \& \& \& \& \& 63 \& -58 \& -38

\hline \& -6 \& \& \& 52 \& No solu \& on foun \& \& \& 67 \& -63 \& -37

\hline \& 110 \& -109 \& -33 \& \& \& \& \& \& -161 \& 146 \& 102

\hline \& -120 \& 119 \& 35 \& 53 \& 3 \& 3 \& \& \& \& \&

\hline \& 147 \& -121 \& -112 \& \& $\begin{array}{r}5 \\ \hline\end{array}$ \& -4 \& -2 \& 64 \& 6 \& -5 \& -3

\hline \& -508 \& 447 \& 347 \& \& -240 \& $\underline{237}$ \& 80
-935 \& \& 25 \& -22 \& -17

\hline \& 1557 \& -1555 \& -244 \& \& 2315
-2370 \& -2263 \& -935 \& \& -110 \& 101 \& - 67

\hline \& \& \& \& \& -2370 \& 2141 \& \& \& -152 \& 151 \& 41

\hline \& \& \& \& \& \& \& \& \& 249 \& -248 \& -57

\hline \multirow[t]{5}{*}{35

36} \& \& \& \& 54 \& 12 \& -11 \& -7 \& \& \& \&

\hline \& 14
1154 \& -13 \& -8 \& 54 \& -371 \& -11 \& 192 \& \& -393 \& 337 \& 282

\hline \& 1154 \& -1120 \& -509 \& \& 1998 \& -1967 \& -715 \& \& 519
-620 \& -482 \& -303

\hline \& \& \& \& \& Also 6 \& rived s \& utions. \& \& -620
-786 \& 617 \& 151

\hline \& 3 \& \& \& \& \& \& \& \& -879 \& 814 \& 519

\hline \multirow{5}{*}{36} \& \& -3 \& -1 \& \& \& \& \& \& \& \&

\hline \& -75 \& 71 \& 40 \& 55 \& 3 \& 3
-2 \& 1 \& \& -1017 \& 1012 \& 249

\hline \& 272 \& -269 \& -87 \& \& 4
10 \& \& \& \& -1121 \& 1110 \& 345

\hline \& \& \& \& \& 10
29 \& \& -6 \& \& 1219 \& -972 \& -963

\hline \& \& \& \& \& 19
-110 \& \& -23
62 \& \& -1223 \& 1198
-1438 \& 479

\hline \multirow[t]{5}{*}{37} \& 4
-56 \& 5 \& \& \& -110 \& \& \& \& 1447 \& -1438 \& -383

\hline \& \& \& -84 \& \& 199
-249 \& - 191 \& -97 \& \& -1539 \& 1224 \& 1219

\hline \& \& \& \& \& -249
-368 \& 246 \& 84 \& \& 1866 \& -1607 \& -1329

\hline \& \& \& \& \& -566 \& 559 \& 188 \& \& 1899 \& -1587 \& -1418

\hline \& 4 \& \& \& \& 2197 \& -2195 \& -307 \& \& 3011 \& -2555 \& -2198

\hline 38 \& -27 \& \& 16 \& \& 2406 \& -2337 \& -1052 \& \& Also 24 \& derived sol \& lutions.

\hline \multirow[t]{2}{*}{39} \& \multicolumn{3}{|l|}{\multirow[t]{3}{*}{No solution found.}} \& 56 \& 22 \& -21 \& -11 \& 65 \& ${ }^{4}$ \& 1 \& 0

\hline \& \& \& \& \& -47 \& 42 \& 31 \& \& -111 \& 91 \& 85

\hline \multirow[t]{2}{*}{42} \& \& \& \& \& -672 \& \& 505 \& \& -759 \& 730 \& 364

\hline \& No solu \& ion found \& \& \& Also 3 \& rived s \& utions. \& \& 793

-929 \& $$
\begin{array}{r}
-770 \\
903
\end{array}
$$ \& \[

$$
\begin{array}{r}
-348 \\
403
\end{array}
$$
\]

\hline \multirow[t]{7}{*}{43} \& 3 \& \& 2 \& 57 \& \& \& \& \& \& \&

\hline \& 9 \& -7 \& -7 \& \& -38 \& \& 25 \& 66 \& 4 \& 1 \& 1

\hline \& -13 \& 12 \& 8 \& \& 193 \& -185 \& -95 \& \& \& \&

\hline \& -52 \& 51 \& 20 \& \& -383 \& 382 \& 76 \& \& \& \&

\hline \& 837 \& -823 \& -307 \& \& -575 \& \& 190 \& 69 \& 5 \& -4 \& 2

\hline \& \& \& \& \& \& \& \& \& 26 \& -22 \& -19

\hline \& \& \& \& \& 835 \& -833 \& -161 \& \& -379 \& 377 \& 95

\hline 44 \& 8 \& -7 \& -5 \& \& -998 \& 982 \& 361 \& \& -403 \& 398 \& 134

\hline
\end{tabular}

110 Solutions of the Diophantine equation $x^{3}+y^{3}+z^{3}=k$.
Solutions of $x^{3}+y^{3}+z^{3}=k$-continued.

University Mathematical Laboratory, Cambridge.

[^0]: * Received 4 May, 1954; read 13 May, 1954.
 \dagger L. J. Mordell, " On the integer solutions of the equation $x^{2}+y^{2}+z^{2}+2 x y z=n$ ", Journal London Math. Soc., 28 (1953), 500-510.

[^1]: \dagger These are values of t in (14) or (15).

