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SOLUTIONS OF THE DIOPHANTINE EQUATION

x'3-\-y3-\-z3 = k

J. C. P. MILLER and M. F. C. WOOLLETT*.

1. In a recent paper, Mordellf discusses solutions of the equation

= m (1)

and gives an outline of available information on this equation and others
derived from it. In particular he remarks " I do not know anything about
the integer solutions of

= 3

beyond the existence of the four sets (1, 1, 1), (4, 4, —5), etc.; and it must
be very difficult indeed to find out anything about any other solutions ".

At Prof. Mordell's suggestion, an attempt was made to find further
solutions with the help of the electronic computer (EDSAC) at the
Cambridge University Mathematical Laboratory. This paper records
the results obtained during that search, which was extended to include all
solutions of

k (2)

with 0 < k < 100, | z | < | y | < | a; | < 3 1 6 4- N o further case with k = 3
was found; 345 primitive solutions, for which (x, y, z) = 1, \x\ ^3164
are listed below. There are also 91 derived solutions, for which

2. It is a reasonably simple task to program a direct trial and error
search for solutions, and two such programs were prepared, one by
each author. For two main reasons, the search was not confined to the
case k = 3: (i) it is clear that solutions for other values of k also have their
interest, (ii) it is desirable to present a problem to the machine in such a
way that solutions are produced at reasonably frequent intervals. It is
also relevant to note that it takes very little longer to search for solutions
with a wide range of k than to search for solutions with a single value of k.

The second point is important for the operator, since the production
of an occasional solution provides a useful indication that the machine
is working correctly, and at the same time tends to preserve an interest

* Received 4 May, 1954; read 13 May, 1954.
f L. J. Mordell, " On the integer solutions of the equation xi+y2+z2+2xyz = n ",

Journal London Math. Soc, 28 (1953), 500-510.
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in the computation. The limit k ^ 100 was chosen rather arbitrarily, but
proved satisfactory.

3. The search is at first sight " three-dimensional", that is, x, y, z
may apparently vary independently over considerable ranges of values.
However, the inequality x3-\-y3-{-z3 ̂  100 is, in fact, sufficiently restrictive
to ensure, for by far the greater part of the search, that at most two values
of y are tested for each combination (x, z). The search is thus " two-
dimensional " in practice.

We must now specify the problem a little more closely. Clearly we
may, without loss of generality, take

\x\^\y\^\z\, (3)

and by changing all signs if necessary, and allowing k to lie anywhere in
the range

- 1 0 0 < & < 1 0 0 , (4)

we may suppose that x > 0. -This will be assumed throughout this and
the following paragraphs 3 to 8, although in the tables we still keep
k > 0 and allow x to be negative.

Four sign combinations are now possible

{x,y,z)=(l,m,'n) (5.1)

(x, y, z) = (I, m, —n) (5.2)

(x, y, z) = (I, —m, n) (5.3)

{x,y,z)={l, -m, -n) (5.4)

in which I ̂  m ^ n ̂  0. We consider these cases in turn.

4. Case (5.1). Since x, y, z are all positive, while l3-\-m3-\-n3 ^ 100,
it is clear that I ̂  4, and that there is a small number of solutions which
were obtained by inspection.

Case (5.2). Here 100 ̂ zx3-\-y3-\-z3 = l3+m3—nz ^l3, since m^n.
Again I ̂  4, leading to a small number of solutions, found by inspection.

Case (5.3). Here, with 100 > k = l3—m3-\-n3, there are the infinite
sets of solutions (I, —I, n) for each 0 ̂ .n < 4 , with I taking any integer
value. If we exclude these obvious sets, we may write I ̂  m-\-1, and then

100 ̂  3Z2—
whence I ̂  6.

Hence, once again, we have a small number of solutions that may be
found by inspection.
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5. Case (5.4). There remains the final and main case

xs-\-y3-\-z3 = I3 —m3 — n3 with l>m^n. (6)

We may write I > m strictly, if, as before, the infinite sets (I, —I, —n)
are excluded; these sets are identical with those of case (5.3), apart from
a change in all signs. We now examine the ranges of values that may be
taken by I, m, and n.

Firstly I is unrestricted in magnitude, as will be evident from the
general cases given in §13.

Secondly m^n, so that

—2m3,

or ra

whence, on incorporating (6),

Z .2 -^ 8 <m+l<Z , l>6. (7)

Thirdly 100 > I3 —ra3 — n3 > I3— (I—I)3 —n3

giving %3>3Z2 — 31—99 or n^no(l) (8)

where no(l) is a limit, positive when I > 7 and increasing with I. Also

or w<[£(Z3+100);p/3 (9)

whence, finally,

Z ^ 5 . (10)

6. The method used on the machine was essentially as follows. Suppose

E = l3-m*-n3 (11)

is known for particular values of I, m, n, restricted by (7) and (10). For the
moment I is kept fixed, and the magnitude of E tested. If E exceeds 100,
we increase n by a unit; if E is less than —100, we decrease m by a unit.
In either case, the test and subsequent stages are then repeated.

If —100 < E < 100, a new solution has been found and is recorded,
n is then increased, and the test for magnitude and subsequent stages
repeated.

It remains to be shown that, apart from a finite number of cases with
small I, two successive steps cannot both lie within the range \E\ < 100.
We note first that, if such a value, | E\ < 100, is found, the next change is
always an increase of a unit in n; this was arranged deliberately because
n^.m. The corresponding change in E is least when n is least. Hence
the minimum step, for prescribed I, occurs when n is at its minimum value,
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given by (8). The corresponding change BE, namely (wo-f-l)
3—n0

3,
exceeds 200 when I exceeds 12, as may be seen from the following values :

(12)

The few cases with I ̂  12, when two or more solutions can exist with
the same values of both I and m, may be obtained by inspection, but were,
in fact, found by one of the programs (see §7); the other program
(see §8) was designed for dealing with large I and omitted the special
instructions needed to cope with these solutions.

7. The two programs make use of different search plans. In one case
we write I = m-\-r and

E = (m+r)3—m3—n3

= 3m2r+3mr2+r3—w3 (13)

which is quadratic in m, cubic in r and n.
The search was made by taking r=l, 2, 3, ..., i2 in succession; for

each value of r, m started at unity, whilst n started from zero. One or
other of m and n was then increased by unity, according to the sign of
E—100, recording any solution with | E\ ^ 100, this process being repeated
until m reached 600. The value of r was then increased by unity, and the
process repeated, m and n again starting from 1 and 0 respectively.

The value of r was increased steadily to a final value R, chosen so that
all cases with n < 600 were covered, that is, so that

(601+i£)3-2(600)3 > 100 > (600+i2)3-2(600)3.

This gives i?=155.
The changes in E consequent on changes inmorw were effected by the

recording and appropriate addition of first and second differences corres-
ponding to unit change in m, or of first, second and third differences foi
unit changes in n. The former depend on r, but this remains constant for
each run of 600 values of m. Differences were also used to alter the starting
values of quantities depending on r, when a new cycle of 600 values of m
wag started.

So long as I = m-\-r < 12, each change in m was combined with a fresh
start at zero for n, to pick up those of the cases mentioned at the end of
§6, where an increase in m and a decrease in n were simultaneously possible.
When I > 12, however, the value of n could no longer decrease as m increased
steadily to 600.
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This program gave all solutions for case (5.4) with \k\ ^100, having
J B , » < 600. A few cases with I > 600 were thus included.

8. The second program also used differences for modifying E, but
worked directly in terms of I, m, and n. For each value of I, m was started
at l~ 1 and n started at no(l— 1), [see (8)]. The first step was to determine
no(l), noting that nQ(l) ^nQ(l— 1). The general run then decreased m
by unity or increased n by unity according as E—100 < or ^ 0 ; this
process ceased when n exceeded m, and I was then increased by unity
and the cycle recommenced. Solutions with | i£ |^100 were printed
as found.

Owing to the fact that the terms in E are cubic for all of I, m, n, the inner-
most cycle (that which changes m or n by unity) is a little longer than in
the other program. However, the complete separation of I, m, n made
it a little easier to start the search at an arbitrary value of I and to stop
at any convenient larger value. This program was used up to I = 3164.

9. The main table gives all the solutions found with \x\ ^3164. Only
primitive solutions, for which (x, y, z) have no common factor, are given.
The sign of k is kept positive throughout the table, so that x may be
negative.

The arrangement is to list solutions for each value of k in succession
and, when k has a cubic factor, to give also the number of solutions that
may be derived, up to the limit for x stated above, from solutions for earlier
values of k.

The values to \x\ = 1600 have all been obtained twice from distinct
runs on the machine. Above \x\ = 1600, only one run was made, as it
seemed of more interest to spend time in obtaining new solutions, readily
verified, rather than to make sure that no odd solution had been overlooked.
In fact, just one case, with k = 100 exactly, had been omitted on the first
run.

Discussion of results.

10. The total numbers of solutions found, for successive ranges of 500

m a;I, are listed below

Primitive
Derived
Total ...

1-500

232
49
281

501-
1000

44
11
55

1001-
1500

19
9
28

1501-
2000

18
8
26

2001-
2500

18
7
25

2501-
3000

11
5
16

Total

342
89
431

Range of

Solutions

There were also found three primitive and two derived solutions for
3000 < I z | < 3164.
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11. Since all cubes have the form 9A or OA^l, the ways in which
k = 9n±K can be made up depends on K.

k = 97iJ:4 is impossible, while the 27 combinations (a, j8, y) where
a;=3A1+a, ?/ = 3A2+j9, z = 3A3+y, with a, j8, y, each —1, 0, or 1, are
distributed thus

•Form No. of No. of
of k Combinations (a, j8, y) Combinations Solutions

9n (0, 0, 0) (0, 1, - l ) e t c . ... 7 93

9%±1 (±1 , 0, 0) etc., (1, 1, - 1 ) etc.,
(1, - 1 , - l ) e t c .

9n±2 (1, 1,0) etc., ( - 1 , - 1 , 0 ) etc....

9n±S (1, 1, l )or(—1, —1, —1)

The last column gives the number of solutions, among the 436 found,
falling into the four categories, indicating fewer than expected for k = 9n
and rather more for k = 9n±2.

The distribution within the groups is, however, highly erratic. Further
sub-division, for modulus 27 or 81, may help to account partially for this.
For example, 9n is composed of the three cases 27m and 27m=|=9. If
x, y, z have the forms 9/^+a, 9jix2+j9, 9ju.3-fy, denoted by (a, jS, y) then
fc = 27m is given by the forms (±3, 0, 0), (±3, ± 3 , 0), (±3, ± 3 , ±3)
and by (p, 1, —1), (p, —2, 2) and (/>, 4, —4), where p = 0, 3 or 6; counting
permutations this gives 81 forms. Likewise & = 27ra+9 is given by the
forms (p, 1, 2), (p, —2, —4) and (p, 4, —1); with permutations this gives
54 forms. Thus 27m, 27m+9, 27m+18 occur in proportions 3:2:2.
The table does not provide enough evidence to give a good test of this.

12

6

2

190

112

41

436

12. The paucity of solutions for k = 9w±3 is noticeable; this covers
the interesting case k = 3 and may be made the basis of an extended and
refined search in this case.

In fact, we may allow both k and x [still retaining (3)] to take either sign,
but have instead the restriction that x, y, z, shall all be of the form 3A+1.
A further search along these lines is planned, with extended range of k,
say |&|< 10000, for the reasons indicated in §1, and also in order to
provide material to throw light,.if possible, on some of the queries of §14.

13. Two single-parameter families of solutions have been given,
respectively for k = 1 and k = 2. If we relax the condition (3), that
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^ |y | ^ | z\, these may be written

L __ i JJ.—.QM w = 9£4+3£ z== 9 i 3 + l (14)

k=2 rc=6*3+l y=— 6^3+l z = — 6«2 (15)

These give a solution for each integer value of t, positive or negative.
Both (14) and (15) can be generalized to two-parameter solutions,

for values of k depending on the second parameter:

(16)

y z=-6t2\ (17)

Neither of these contributes for | k\ < 100, although (17) with A = 2, after
removing the common factor 2, contributes to k — 128; e.g. (7, 1, —6)
or (85, - 7 7 , -54) .

Only nine of the 21 solutions found for k = 1 are given by (14), whereas
all eight solutions for k = 2 are given by (15).

For k = 16, however, although seven solutions found are derived from
those for k = 2 by doubling x, y, z, a single solution has been found
(1626, —1609, —511), which is not given by the formula.

For k = 54, six solutions may be derived from those for k — 2, while
three others are primitive.

14. The main query remains: (1) Are there further solutions for k = 3?
In view of the remarks of §11, and comparison with, for example, the cases
k= 12, 60, 66, 78, 93, this lack of solutions is less surprising than at first
seems apparent, and the hope remains that a more refined and extended
search may be successful.

Other queries that may be put are: (2) Does a solution exist for k = 2,
not given by the formula (15)? (3) Do solutions exist for the cases
k= 30, 33, 39, 42, 75, 84, 87, all of form 9A±3?

In connection with these values of k, it is of interest to search for
solutions with k' = 8k, i.e. 240, 264, 312, etc.

Concerning the number of solutions found with I < 3164 we may ask:
(4) Can an explanation be given for the irregularity of distribution of
solutions with M In particular: (5) Why have k — 83 and k = 90, for
example, so many as 13 and 14 solutions? The preponderance of solutions
for k a cube is notable: k = 1, 8, 27, 64 have respectively 22, 18, 19, 19
primitive solutions.

[Note added in proof. An extension of the search to a = 3200 has yielded
two further solutions :

— 31673+31663+3113= 64

32003—31683—9913 = 97.]



108 J. C. P. MILLER and M. F. C. WOOLLETT

TABLE

Solutions of x3-\-y3+z3 = k.

k

1

2

3

6

7

X

1
9

-12
-103
144

-150
172

-249
-495
505

577
729

-738
904
1010

1210
-1544
-1852
-1988
2304

-2316
3097

1
7
49
163
385

751
1297
2059
3073

1
rj

2
65
236
644

2
-105
-169

y

0
-8
10
94

-138

144
-138
235
438

-426

-486
-720
729

-823
-812

-1207
1537
1738
1897

-2292

2304
-2820

1
-5
-47
-161
-383

-749
-1295
-2057
-3071

1
4

2
-58
-235
— 637

2
104
168

z

0
-6
9
64

-71

73
-135
135
334

-372

-426
-242
244

-566
-791

-236
368
1033
1010
-575

577
-1938

0
-6
-24
— 54
-96

-150
-216
-294
-384

1
4

— i
-43
-55
— 205

0
32
44

«t

0
+ 1
2

+ 2

-2

+ 3
-3

+ 4

-4

0
1
2
3
4

5
6
7
8

k

8

X

-16
-34
41

-89
-127

-150
-385
-466
-873
995

-1312
-1985
-1987
-2448
2840

2883
-2908
-2920

y

15
33

-40
86
106

141
345
459
825

-947

1293
1808
1740
2189

-2831

-2526
2671
2377

2

9
15

-17
41
95

83
252
165
470

-514

459
1241
1371
1611
-601

-1987
]769
2255

Also 17 derived solutions.

9

,10

11

12

15

16

2
217

2
4

-171
683

3
258

-641
843

-11

2
— 46
332

1626

1
— 216

1
-3
141

-650

-2
-212
619

-695

10

2
44

— 265

-1609

o
— 52

1
-3
130

-353

-2
-197
297

-641

7

_1
23

-262

-511

Also 7 derived solutions.

17

18

2
-52
135
492

— 558

3
-123
-218
1671

2
50

— 111
-391
473

-2
101
215

-1373

1
25

— 103
-390
408

-1
94
75

-1276

k

19

20

21

24

25

26

27

X

3
19

-77
-95

3
-56
156

-275
391

1986
2833

16
-86
-101
445

y

-2
-16
76

• 91

-2
55

-137
256

-387

-1937
-2816

-14
85
97

-401

z

0
-14
26
47

1
21

-107
159

-122

-827
-741

-11
28
49

-287

Two derived solutions.

3
1167

-2683

3
-312
-469
-2107

6
19
46

-60
115

159
-186
340

-358
378

-414
-771
-1130
1188

-1403

1568
-1661
2206
2434

-1
-1159
2357

j

297
468
2106

-5
-18
-37
59

-114

— 131
184

-309
354

-340

334
733
915

-1156
1259

-1533
1652

-1954
-2325

-1
-319
1839

0
161
87
237

-4
-10
-36
22

-34

— 121
59

-214
115

-245

323
401
878

-509
915

-632
420

-1485
-1228

Also 15 derived solutions.

| These are values of t in (14) or (15).
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Solutions of x*-{-y3-\-z3 = k—continued.

k

28

29

30

33

34

35

36

37

38

39

42

43

44

X

3
-17
-59
1541
2269

3
4

-20
235

V

1
14
56

-1526
-2268

1
^
18

-233

No solution found.

N o solution found.

3
5

-6
110

-120

147
-508
1557

3
14

1154

3
4

-75
272

4
-56
445

4
-27

2
-4
5

-109
119

-121
447

-1555

2
-13

-1120

2
-3
71

-269

-3
50

-444

-3
25

No solution found.

No solution found.

3
9

-13
-52
837

8

2
-7
12
51

-823

-7

2

0
13
31

-473
-249

1
-2
13

-69

-1
-3
5

-33
35

-112
347

-244

0
-8

-509

1
-1
40

-87

0
37

-84

1
16

2
— 7
8
20

-307

g

k

45

46

47

48

51

52

53

54

55

56

57

X

4
-552
-2369

3
-29
815

-8
31
63

-141

31

Also 4

-796

y

-3
533
2025

3
26

-758

7
-30
-50
139

-26

z

2
256
1709

-2
19

-473

6
-14
-50
49

-23
derived solutions.

659

No solution founc

3
5

— 240
2315

-2370

12
— 371
1998

Also 6

3
4
10
29

-110

199
— 249
— 368
— 566
2197

2406

22
-47

-672

Also 3

4
-38
193

-383
-575

835
-998

3
4.

237
— 2263
2141

-11
353

— 1967

602

-1
-2
80

— 935
1518

-7
192

-715

derived solutions.

3
— 2
— 9
— 23
103

-191
246
367
559

-2195

-2337

-21
42
559

1
— 1
— 6
— 23
62

-97
82
74
188

-307

-1052

-11
31
505

derived solutions.

- 2
34

-185
382
568

-833
982

1
25

-95
76
190

-161
361

k

60

61

62

63

64

65

66

69

X

5
1202

5
-966

3
4
5

-34
-43

-441
2903

4
7
63
67

-161

6
25

-110
-152
249

-393
519

-620
-786
-879

-1017
— 1121
1219

-1223
1447

-1539
1866
1899
3011

y

-4
-1201

-4
845

3
-1
-4
27
41

434
-2744

— 1
-6
-58
— 63
146

-5
— 22
101
151

-248

337
-482
617
669
814

1012
1110
-972
1198

-1438

1224
-1607
-1587
-2555

z

' - 1
-163

0
668

2
j
1
27
22

159
-1561

0
-4
-38
— 37
102

g
— 17
67
41

-57

282
-303
151
571
519

249
345

-963
479

-383

1219
-1329
-1418
-2198

Also 24 derived solutions.

4
-111
-759
793

-929

4

5
26

-379
-403

1
91
730

-770
903

1

-4
-22
377
398

0
85
364

-348
403

1

2
-19
95
134
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Solutions of x3-\-y3-\-z3 = k—continued.

k

70

71

72

X

-21
-64
581

-694
-2359

4
5
23

-24
36

351
-391
-412
459

-533

-10
28

Also two

73

74

75

78

79

80

81

82

4
25

-47
344

y

20
63

-487 .
693
2325

2
-3
-20
23

-33

-342
389
407

-391
443

9
-27

z

11
23

-432
113
824

-1
-3
-16
12

-22

-148
97
136

-333
401

7
-13

derived solutions.

2
— 24
43

-335

No solution found.

No solution found.

-55
2123

35
74
711

53
-2080

-33
-66
-706

1
-12
29

-146

26
-829

— 19
- 4 9
-196

Four derived solutions.

-18
418
2638

Also 2

14
-1317

17
-351
-2368

10
-310
-1719

derived solutions.

-11
1188

— 11
847

k

83

84

87

88

89

90

91

X

4
6
25

-29
43

115
-183
382
388
510

2227
-2648
2932

y

3
g

-23
24

-36

-96
151

-317
-333
-509

-2220
2595

-2844 -

No solution found.

N o solution found.

5
17
167

— 4
-16
-135

z

-2
-2
-15
22

-32

-86
139

-288
-278
-92

-470
1030

-1301

3
-9

-130

Also 4 derived solutions.

-7
-1330
-2514

4
5
6

11
X 1

-27

-48
56
75

-100
-456

465
-604
1165

-1803

4
6

-381
910

— 1341

6
1321
2036

3
3

-5
o

— y
• 26

4.7
— 51
-73
99
443

-454
603

-1056
1798

3
-5
364

-869
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