Extending the Factorial

Introduction

One of the most interesting aspects of mathematics is the extension of
certain concepts into larger sets of numbers. For instance, we are all
initially taught to think of exponentiation as repeated multiplication. For
example: 23 = 2 x 2 x 2. This definition of exponentiation as the repeated
multiplication of the base only makes sense for whole number exponents.
However, mathematicians then figured out ways of making sense of
rational, irrational, imaginary and even matrix exponents. [ believe that this
way of thinking leads to the discovery of the most beautiful results in all of
mathematics. One such beautiful result is Euler’s identity: '™ = —1.

Mathematicians thought of another concept that could produce interesting
results when extended into real numbers from natural numbers: factorial of
a natural number n, denoted as n!.

The factorial of n is defined in natural numbers as follows:
n=nxmn-1)xn-2)x-x3x2x1
soonl=nxm-1)!

This recursive formula allows us to figure out the factorials of natural
numbers. Plugginginn = 1, we get 1! = 1 X (1 — 1)!, which means that 0! is
equal to 1. In general, if the factorial of a natural number is already known,
the next or the previous natural number’s factorial can easily be calculated
using the recursive formula.

Factorials show up in the series expansions of various functions,
combinatorics, probability, computer science and in many more fields of
mathematics and science. One of the most important and popular
applications of the factorial is in calculating the number of arrangements of
multiple items. n many items can be arranged in n! many ways. Another use
of the factorial is in the estimation of the number e, using the formula:

w 1 1,1 ,1,1, 1 ~
e = Zn=Oa = E+z+§+z+a+ -+~ 2.7182818284509.

After being told perpetually that the definition of n! only holds for natural
numbers in school, I was blown away when I first found out that it was
possible to extend it to real numbers. Being my first recognition of
mathematical beauty, this was an especially special discovery of mine,



because it greatly increased my appreciation and passion for mathematics. I
started to improve my understanding of calculus to fully comprehend this
concept, growing a larger and larger passion for mathematics along the
way.

Deriving the Generalised Definition of the Factorial

When the values of n! are plotted on a graph, discrete points that are not
connected by a curve are produced. One way of connecting the dots is
making use of a function. The discrete points form the following visual:
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Generalising the factorial corresponds to defining a function (which I will
denote as I1(x)), such that it connects the dots on the graph with a curve.
The factorial function should have the following properties:

e [I(x) =x!

o M(x)=xM(x—1)

e The function must take all values of x in real numbers (except for
possible values where the function is undefined).



In order to derive I1(x), we will start by considering the following
parameterised integral function:
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I(s) = f e Stdt
0
The next step is to differentiate this function repeatedly and look for a
pattern. We will make use of the Leibniz integral rule to differentiate under
the integral sign (also known as Feynman’s integration trick).
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The expression for the nth derivative of I(s) is equivalent to (—1)"L{t"},
where L{t"} is the Laplace transform of t". In order to complete our
derivation, we must first find an expression for L{t"}. We will make use of
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Assuming that the Laplace transform and the summation are

interchangeable:
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Since both sides are sums with the same indices, we can conclude that:

L{t"} =

In the beginning of the derivation, we found out that the function /(s)’s nt
derivative is (—1)"L{t"}, which means that:
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Substitution: u = st, du = sdt
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We have finally derived an expression that represents the factorial as an
integral. Therefore, we can now conclude that our generalised factorial

function, I(x) = | Ooo t*e~tdt can be used to calculate the factorial of any
real number. I1(x) also satisfies the conditions we have listed before (I will

not go through the process of proving these properties, because the proofs
do not add much to the final conclusion).

Note: This derivation can be made more rigorous by justifying the
interchange of limits and providing the conditions under which the infinite
sums converge.

A slightly altered version of [1(x) that is more commonly used in the
mathematical community, known as the Gamma function, I'(x), is defined as
follows:

I'(x) =f t"le~tdt
0

Sol'(x) = II(x —1),and I'(x) = (n — 1)! for whole numbers.

It is still often debated which of the two functions is more sensible to use to
simplify equations and identities, but the Gamma function is
overwhelmingly more commonly used than the Pi function.



Now that we have derived the Gamma function, we can finally graph it to
connect the dots on the previous plot with a curve. The Gamma function’s
graph looks like this:
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I remember being surprised to see this graph when I asked Wolfram Alpha
to graph x!. I had no idea why the graph looked like this, because I did not
know anything about the gamma function back then. It was impossible for
me to make any sense of what I saw as a first year IGCSE student.

The graph shows that the Gamma function is clearly showing asymptotic
behaviour at negative integers. This is because the area under the graph of
t*~1le~t is infinite between the t = 0 and t — oo, for x being a negative
integer. Therefore, the Gamma function is undefined for these values of x.

All the odd negative integer values of I'(x) diverge to infinity, while the
even negative integer values of I'(x)diverge to negative infinity. It is also
apparent that there are no points at which I'(x) = 0.

We can now use the Gamma function to determine the values of different
factorials. This can be done using alternative representations of the Gamma
function, and the formulae that we will derive using these representations.



Alternative Representations of the Gamma Function

Another peculiar thing about the Gamma function is that it can be
represented in many different forms. Let us take a look at different
representations of the Gamma function.

1. Gauss Representation:

Using the limit definition of the exponential function, the integral
representation of the Gamma function can be transformed into the
following:
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Assuming that the limit and integration are interchangeable, we get:

00 t n
['(x) = lim t*1 <1 - —) dt
n—-oo 0 n
After doing n+1 iterations of integration by parts and evaluating the
anti-derivative at the limits of integration (which I will not demonstrate
to avoid unnecessarily prolonging this derivation), we get:
n* 1:2-+(n—-1)'n

F(X)=rlli_)r£107'(x+1).(x+2)---(x+n—1)'(x+n)

Expressing the product in capital pi notation, the following final form is
obtained:

n
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2. Euler Representation:

The number n can be represented in the following way:

n—1

234 n Trk+1
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Multiplying the product with the term at n and its reciprocal:
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Plugging this representation of n into the Gauss representation gives the
Euler representation:
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3. Weierstrass Representation

The final and most interesting representation of the Gamma function is
due to Weierstrass. We will start with the Gauss representation, and
write n* as exp(x Inn).
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where H, is the harmonic series,defined as Z T
k=1

Further algebraic manipulation yields:
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The limiting difference between the Harmonic series and the natural
logarithm is equal to what is known as the Euler-Mascheroni constant,
y = lim (H,, — Inn).

n—-oo



In light of this information, we can conclude that:

~T(x) = yxl_[ %(1 +%)_1

k=1

These different representations are going to be useful when deriving
relationships involving the Gamma function, one of which is Euler’s
reflection formula.

Euler’s Reflection Formula

Perhaps the most important and useful functional equation of the gamma
function is Euler’s reflection formula, which I will derive now using the
Euler representation of the gamma function along with the infinite product
representation of sin mx.

We will begin by considering I'(x)I'(1 — x), which is equivalent to
(=0T (=0)T'(x).
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This product is very similar to the infinite product representation of

sin mx, which is:
smnx—nxl |1——

Taking the reciprocal of both sides gives:
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Multiplying both sides by & gives:
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In conclusion:

F)r(l—-x) =

sin tx
~T()I'(1 —x) = mescmx

We can use this result to calculate the value of (— %) l. Plugging in x = %

into Euler’s reflection formula gives:

P r(1-L) = resc® =
(2)( 2)‘““2‘”

@) n or(l)-e

This surprising result enables us to determine other values of the
gamma function using its recursive definition. For example:

Q) =r@)=in@). 1) -E

(@)= o)

—, etc.
Gamma Function’s Relation to Other Functions
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There exist interesting equations that relate the gamma function to other
special functions. These relationships are often quite surprising, because it
is usually not immediately obvious that gamma function is related to other
famous functions. The said famous functions [ would like to explore now
are the following:

1. Reimann Zeta Function
We will start with the following integral:
0 1x—1
jo St
The first step is to multiply the integrand’s numerator and denominator by
e L.




1 ! _ . .
Using— = X’ rk, we can rewrite ——as Xg-ole Y. Plugging this into

the integral gives:

ootx—le—t o 2
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Once again, assuming that the order of summation and integration are
interchangeable, we can rewrite the integral as:

oo x x oo
j Z e—kttx—le—t dt = 2f tx—le—(k+1)tdt
0 k=0 k=0 0

Substitution: let u = (k + 1)t,du = (k + 1)dt
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where {(x) is the Reimann zeta function. This relationship provides
another alternative representation of the gamma function in terms of the
Reimann zeta function as:

1 o tx—l
['(x) = dt
© =755, 7=
Not only does this relationship provide a new way of expressing the gamma
function, but it also enables us to find a general solution of the integral for

2
different values of x. For instance, it is well known that {(2) = % and
I'(2) = 1. Using this we get:
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We can easily solve for the integral to obtain:
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2. Dirichlet Eta Function

A similar process can be carried out to obtain a similar equation that links
the Gamma function with Dirichlet eta function. The result is the following:
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where 1n(x) is the Dirichlet eta function defined as n(x) = Yy~ P

Using the fact that n(x) = (1 — 217*){(x), we can rewrite this equation as:

J ei ; -dt = (1= 279 ()r ()
0
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dt. For

This equation can be used to evaluate integrals of the form fooo zt+ T

example, letting x = 2 yields:
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3. Beta Function (Euler Integral of the First Kind)

Beta function is a multivariable function defined in terms of the Gamma
function. To derive it, we will start with the following product of two
gamma functions.
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0
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Introducing the substitution r = uv and t = u(1 — v) requires the
deduction of the new limits of integration, and drdt.

To determine the new limits of integration, we will start by noticing that r
and t are both greater than 0. This means that u and v too must be greater
than 0. However, v must also be less than 1, because otherwise t would be
lessthan 0. Tosumup:u >0and 0 <v < 1.



To determine drdt, we have to evaluate the determinant of the Jacobian
matrix.
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Therefore I'(x)I'(y) becomes:
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F(x)r(y) = j urty-le-u duj v (1 —v)* ldv
0

0

Using the integral definition of the gamma function, we can deduce that:

F(x)I(y) =T+ y)J v’ 1 (1 —v)* ldy,
0

where f01 vY~1 (1 — v)* 1dv is defined to be the Beta function, B(x, y).

We can therefore express the beta function in terms of the gamma function:

reOr)
I'(x+y)

Beta function also has an equivalent trigonometric form, which is extremely
useful when evaluating trigonometric integrals. To derive it we will use the
substitution v = sin? 8, dv = 2sin 6 cos 8 df.
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1
f vV 11 —v)*ldv = j sin®?Y~2 0 cos?*~2 9 2sin @ cos 6 dO
0 0

B(x,y) =

T

2
=~ B(x,y) = Zf sin®?~1 0 cos**71 6 do
0

Notice that the places of x and y can be switched without changing the
result, due to the Beta function’s symmetry.

To demonstrate the practicality of this form of the beta function, I would
like to use it to solve an integral, which requires a relatively large amount of
tedious work to be solved using standard methods of integration.

Consider:
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f Vtanx dx = J sinz x cos 2xdx
0 0

When written in this form, it is apparent that the integral is equal to
1 B (E,l). Therefore, we can deduce that:
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Using Euler’s reflection formula:
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4. Digamma Function
Digamma function is defined as the derivative of the natural logarithm of
I'(x).

(x) == InT(

Y(x):= 0 X)

Using the Weierstrass definition of the gamma function, we can express the
reciprocal of the Gamma function as the following:

e[|
F(x)—xe 1 e
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Taking the natural logarithm of both sides gives:

k+x\ x

—1nF(x)—lnx+yx+Zln< >_E
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= Inl'(x) = -lnx —yx + E_ ( )
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Differentiating both sides gives the following expression for the Digamma
function:
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Derivative of the Gamma function shows up frequently in different
branches of mathematics. In fact, it is commonly represented in terms of the
Digamma function to make its evaluation easier at particular values of x.
This representation is as follows:

I"(x) =T (x)

Calculating the values of ¥ (x) at integer values of x is an interesting
process, one that involves harmonic series, which we have previously
discussed when deriving the Weierstrass representation of I'(x) (this is
why I took the time to derive it).

To find a general expression for i(n), where n is an integer, we will start by
splitting the sum in the definition of ¥/(x) as follows:
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1
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It becomes apparent that the sums are telescoping once we take a look at
the partial sums:

1 1 1 1 1 1 1 1 1
[1——+———i---+———]+[ — +—- i]
n+1 2 n+2 n 2n n+1 2n+1 n+2 2n+2

1
k+n

&=

The partial sums cancel out to give H,, (harmonic series), producing the
following expression for y(n):
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Since the ntt harmonic number is = the final term in the sum can be taken

out of the sigma notation to cancel with the — % term, giving the following

final equation:

1
Yyn)=-y+ z 7 or equivalently: Yy(n) = —y + H,_4

We can therefore express the derivative of the Gamma function at integer
values as:



I'(n) = (=y + Hp-1)(n = 1)!

For example, I''(2) is equal to (—y + H,_1)(2 — 1)!, which evaluates to
1—y,andI'"(3) is equal to (—y + H5_;)(3 — 1)!, which evaluates to 3 — 2y.

Interesting Problems Involving the Gamma Function

The Gamma function and the other identities that we have derived so far
come in handy when solving seemingly unrelated problems. Making use of
the gamma function simplifies many problems and provides beautiful
solutions. [ would now like to work through a few problems to demonstrate
this.

e Problem 1
Evalueate the following generalised integral:
f * dx
o X"+1
To solve this problem, we will make use of the Leibniz integral rule as we
did before.
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Introducing the parameter t in this way is a little counterintuitive, but it will
make the calculation way easier.
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Substitution: let u = tx™, du = tnx™ ldx, dx= - t nun “du
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Since fo un le Udu =T (%), we get:

— = ——tne T
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To get back to the goal integral, I, we will integrate d;—(tt) with respect to t

from O to infinity. This gives the following result by the fundamental

theorem of calculus:
1 /1 ©° 1
I =—F(—> j t ne tdt
n \n/ J,

Since fooo tre~tdt =T (1 — %) we get:
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Using Euler’s reflection formula, we can conclude that:

/ j"o dx T (n)
= =—csc(—
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We made use of the integral definition of the Gamma function, and Euler’s
reflection formula to arrive at this result, which is an interesting

generalisation. Beta function could be used in an alternative solution to this
integral, which also relies on the gamma function.

e Problem 2

Find the Laplace transform of the natural logarithm of t, L{In t}.

L{Int} is defined as:
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L{Int} =j InteStdt
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Substitution: let u = st, du = sdt

1 u 1] (® «
L{Int} = ;j lnge‘”dt = ;U InueY“du— lnsj e‘”du]
0 0 0



The hardest part of finding £{In t} is evaluating [ Ooo Inu e “du, which

cannot be solved using standard methods of integration. To solve this
integral, we will first take a look at the derivative of the Gamma function.
We will once again use differentiation under the integral sign.
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[t can be seen that [ OOO Inu e *du is equal to the derivative of the gamma

function at x = 1. To evaluate I'' (1), we need to make use of the formula we
derived using digamma function for I''(x) at integer values:

') = (=y + Hp-)(@m = 1!
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We can now conclude that:
j Inue*du=—y
0
This result finally allows us to find the Laplace transform of In t.
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e Problem 3
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Evaluate the Gaussian integral, j e‘xzdx,using the gamma function.
—00

We can use the fact that T’ G) = +/1 to calculate the value of the Gaussian

integral.
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~ Gaussian Integral = J e ™ dx =+m

[ believe this is a very elegant method of evaluating the Gaussian integral,
because it does not rely on polar coordinates and double integrals.

Conclusion

The interesting problem of finding a generalisation of the factorial led to
finding a function that is an extension of the factorial to real numbers,
which is I'(x). We then found four different representations of this function,
and used them to derive an interesting result: Euler’s reflection formula,
which relates a product of gamma functions to a trigonometric function.
This alone is a very interesting finding, because the Gamma function and
trigonometric functions do not even seem remotely related, yet we
managed to connect them somehow.

We then derived two other functions that are closely related to the gamma
function: the Beta function and the Digamma function, both of which proved
useful when evaluating certain integrals. Furthermore, we found interesting
relations of the gamma function to the Reimann zeta function and the
Dirichlet eta function, which are both extremely important in analytic
number theory. Given the fact that the million-dollar problem of the
Reimann Hypothesis is all about the Reimann zeta function, I believe it is
safe to say that the Gamma function might play a role in solving it.

We finally put our findings into practice by solving three problems. These
problems demonstrated the practicality of the gamma function and the
other results we have arrived at. We combined many other different tools
from mathematics along the way, including the Leibniz integral rule,
Laplace transform and Taylor series.

There are so many more applications of the gamma function, including
gamma distribution from statistics and quantum physics, which I did not
even begin to explain. The Gamma function’s relations to other functions
are not limited to the ones [ demonstrated. It is connected to many other
functions in many other ways. I also limited the gamma function’s inputs to
real numbers; however, it is possible to extend it to complex numbers as
well. In short: the gamma function shows up constantly in mathematics. It
was impossible for me to explain everything about it, so I picked my
favourites to include.



Despite not including everything I had in mind, [ believe | managed to
emphasise the importance and beauty of extending a simple concept into a
larger set of numbers using the Gamma function as a generalisation of the
factorial. This is therefore one of my favourite concepts in mathematics.



