
Extending the Factorial 
 

Introduction 
One of the most interesting aspects of mathematics is the extension of 

certain concepts into larger sets of numbers. For instance, we are all 

initially taught to think of exponentiation as repeated multiplication. For 

example: 23 = 2 × 2 × 2. This definition of exponentiation as the repeated 

multiplication of the base only makes sense for whole number exponents. 

However, mathematicians then figured out ways of making sense of 

rational, irrational, imaginary and even matrix exponents. I believe that this 

way of thinking leads to the discovery of the most beautiful results in all of 

mathematics. One such beautiful result is Euler’s identity: 𝑒𝑖𝜋 = −1. 

Mathematicians thought of another concept that could produce interesting 

results when extended into real numbers from natural numbers: factorial of 

a natural number 𝑛, denoted as 𝑛!.  

The factorial of 𝑛 is defined in natural numbers as follows: 

𝑛! ≔ 𝑛 × (𝑛 − 1) × (𝑛 − 2) × ⋯ × 3 × 2 × 1 

𝑠𝑜, 𝑛! = 𝑛 × (𝑛 − 1)! 

This recursive formula allows us to figure out the factorials of natural 

numbers. Plugging in 𝑛 = 1, we get 1! = 1 × (1 − 1)!, which means that 0! is 

equal to 1. In general, if the factorial of a natural number is already known, 

the next or the previous natural number’s factorial can easily be calculated 

using the recursive formula.  

Factorials show up in the series expansions of various functions, 

combinatorics, probability, computer science and in many more fields of 

mathematics and science. One of the most important and popular 

applications of the factorial is in calculating the number of arrangements of 

multiple items. 𝑛 many items can be arranged in 𝑛! many ways. Another use 

of the factorial is in the estimation of the number 𝑒, using the formula:       

𝑒 = ∑
1

𝑛!
∞
𝑛=0 =

1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+ ⋯ ≈ 2.718281828459.  

After being told perpetually that the definition of 𝑛! only holds for natural 

numbers in school, I was blown away when I first found out that it was 

possible to extend it to real numbers. Being my first recognition of 

mathematical beauty, this was an especially special discovery of mine, 



because it greatly increased my appreciation and passion for mathematics. I 

started to improve my understanding of calculus to fully comprehend this 

concept, growing a larger and larger passion for mathematics along the 

way.  

 

Deriving the Generalised Definition of the Factorial 

When the values of 𝑛! are plotted on a graph, discrete points that are not 

connected by a curve are produced. One way of connecting the dots is 

making use of a function. The discrete points form the following visual: 

 

 

Generalising the factorial corresponds to defining a function (which I will 

denote as Π(𝑥)), such that it connects the dots on the graph with a curve. 

The factorial function should have the following properties: 

• Π(𝑥) = 𝑥! 

• Π(𝑥) ≡ 𝑥Π(𝑥 − 1) 

• The function must take all values of 𝑥 in real numbers (except for 

possible values where the function is undefined). 
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In order to derive Π(𝑥), we will start by considering the following 

parameterised integral function: 

𝐼(𝑠) = න 𝑒−𝑠𝑡

∞

0

𝑑𝑡 

The next step is to differentiate this function repeatedly and look for a 

pattern. We will make use of the Leibniz integral rule to differentiate under 

the integral sign (also known as Feynman’s integration trick).  

⇒
𝑑𝐼(𝑠)

𝑑𝑠
= න

𝜕

𝜕𝑠
(𝑒−𝑠𝑡)

∞

0

𝑑𝑡 = න −𝑡𝑒−𝑠𝑡𝑑𝑡
∞

0

 

⇒
𝑑2𝐼(𝑠)

𝑑𝑠2
= න

𝜕

𝜕𝑠
(−𝑡𝑒−𝑠𝑡)𝑑𝑡

∞

0

= න 𝑡2𝑒−𝑠𝑡
∞

0

𝑑𝑡  

⇒
𝑑3𝐼(𝑠)

𝑑𝑠3
= න

𝜕

𝜕𝑠
(𝑡2𝑒−𝑠𝑡

∞

0

)𝑑𝑡 = න −𝑡3𝑒−𝑠𝑡
∞

0

𝑑𝑡 

⋮ 

∴
𝑑𝑛𝐼(𝑠)

𝑑𝑠𝑛
= න (−1)𝑛𝑡𝑛𝑒−𝑠𝑡𝑑𝑡 = (−1)𝑛ℒሼ𝑡𝑛ሽ

∞

0

 

The expression for the nth derivative of 𝐼(𝑠) is equivalent to (−1)𝑛ℒሼ𝑡𝑛ሽ, 

where ℒሼ𝑡𝑛ሽ is the Laplace transform of 𝑡𝑛. In order to complete our 

derivation, we must first find an expression for ℒሼ𝑡𝑛ሽ. We will make use of 

ℒሼ𝑒𝑎𝑡ሽ =
1

𝑠−𝑎
, and the series expansion of the functions 

1

1−𝑥
 and  𝑒𝑎𝑥. 

ℒሼ𝑒𝑎𝑡ሽ  =  
1

𝑠 − 𝑎 
 =  ℒ ൝෍

𝑎𝑛𝑡𝑛

𝑛!

∞

𝑛=0

ൡ , 𝑎𝑛𝑑 
1

𝑠 − 𝑎
 =  

1

𝑠
∙

1

1 −
𝑎
𝑠

 =  
1

𝑠
෍ ቀ

𝑎

𝑠
ቁ

𝑛
∞

𝑛=0

 

ℒ ൝෍
𝑎𝑛𝑡𝑛

𝑛!

∞

𝑛=0

ൡ = ෍
𝑎𝑛

𝑠𝑛+1

∞

𝑛=0

 

Assuming that the Laplace transform and the summation are 

interchangeable: 

෍
𝑎𝑛

𝑛!
ℒሼ𝑡𝑛ሽ =

∞

𝑛=0

෍
𝑎𝑛

𝑠𝑛+1

∞

𝑛=0

 

 



Since both sides are sums with the same indices, we can conclude that: 

 ℒሼ𝑡𝑛ሽ =
𝑛!

𝑠𝑛+1
 

In the beginning of the derivation, we found out that the function 𝐼(𝑠)’s nth 

derivative is (−1)𝑛ℒሼ𝑡𝑛ሽ, which means that: 

⟹ (−1)𝑛ℒሼ𝑡𝑛ሽ =
(−1)𝑛𝑛!

𝑠𝑛+1
= (−1)𝑛 න 𝑡𝑛𝑒−𝑠𝑡𝑑𝑡

∞

0

 

⟹
𝑛!

𝑠𝑛+1
= න 𝑡𝑛𝑒−𝑠𝑡𝑑𝑡

∞

0

 

Substitution: 𝑢 = 𝑠𝑡, 𝑑𝑢 = 𝑠𝑑𝑡 

⟹
𝑛!

𝑠𝑛+1
=

1

𝑠𝑛+1
න 𝑢𝑛𝑒−𝑢𝑑𝑢

∞

0

 

∴ 𝑛! =  න 𝑡𝑛𝑒−𝑡𝑑𝑡
∞

0

 

We have finally derived an expression that represents the factorial as an 

integral. Therefore, we can now conclude that our generalised factorial 

function, Π(𝑥) = ׬ 𝑡𝑥𝑒−𝑡𝑑𝑡
∞

0
 can be used to calculate the factorial of any 

real number. Π(𝑥) also satisfies the conditions we have listed before (I will 

not go through the process of proving these properties, because the proofs 

do not add much to the final conclusion). 

Note: This derivation can be made more rigorous by justifying the 

interchange of limits and providing the conditions under which the infinite 

sums converge.  

A slightly altered version of Π(𝑥) that is more commonly used in the 

mathematical community, known as the Gamma function, Γ(𝑥), is defined as 

follows: 

Γ(𝑥) = න 𝑡𝑛−1𝑒−𝑡𝑑𝑡
∞

0

 

So Γ(𝑥) =  Π(𝑥 − 1), and Γ(𝑥) = (𝑛 − 1)! for whole numbers.  

It is still often debated which of the two functions is more sensible to use to 

simplify equations and identities, but the Gamma function is 

overwhelmingly more commonly used than the Pi function.   



Now that we have derived the Gamma function, we can finally graph it to 

connect the dots on the previous plot with a curve. The Gamma function’s 

graph looks like this: 

 I remember being surprised to see this graph when I asked Wolfram Alpha 

to graph 𝑥!. I had no idea why the graph looked like this, because I did not 

know anything about the gamma function back then. It was impossible for 

me to make any sense of what I saw as a first year IGCSE student. 

The graph shows that the Gamma function is clearly showing asymptotic 

behaviour at negative integers. This is because the area under the graph of 

𝑡𝑥−1𝑒−𝑡 is infinite between the 𝑡 = 0 and 𝑡 → ∞, for 𝑥 being a negative 

integer. Therefore, the Gamma function is undefined for these values of 𝑥. 

All the odd negative integer values of Γ(𝑥) diverge to infinity, while the 

even negative integer values of Γ(𝑥)diverge to negative infinity. It is also 

apparent that there are no points at which Γ(𝑥) = 0.  

We can now use the Gamma function to determine the values of different 

factorials. This can be done using alternative representations of the Gamma 

function, and the formulae that we will derive using these representations.    

 

  

  

 

 

 

       

              



Alternative Representations of the Gamma Function 

Another peculiar thing about the Gamma function is that it can be 

represented in many different forms. Let us take a look at different 

representations of the Gamma function. 

1. Gauss Representation: 

Using the limit definition of the exponential function, the integral 

representation of the Gamma function can be transformed into the 

following: 

Γ(𝑥) = න 𝑡𝑥−1𝑒−𝑡𝑑𝑡 = න 𝑡𝑥−1 lim
𝑛→∞

൬1 −
𝑡

𝑛
൰

𝑛

𝑑𝑡
∞

0

∞

0

 

Assuming that the limit and integration are interchangeable, we get: 

Γ(𝑥) = lim
𝑛→∞

න 𝑡𝑥−1
∞

0

൬1 −
𝑡

𝑛
൰

𝑛

𝑑𝑡 

After doing n+1 iterations of integration by parts and evaluating the 

anti-derivative at the limits of integration (which I will not demonstrate 

to avoid unnecessarily prolonging this derivation), we get: 

Γ(𝑥) = lim
𝑛→∞

𝑛𝑥

𝑥
∙

1 ∙ 2 ⋯ (𝑛 − 1) ∙ 𝑛

(𝑥 + 1) ∙ (𝑥 + 2) ⋯ (𝑥 + 𝑛 − 1) ∙ (𝑥 + 𝑛)
 

Expressing the product in capital pi notation, the following final form is 

obtained: 

∴ Γ(𝑥) =
1

𝑥
lim

𝑛→∞
𝑛𝑥 ෑ

𝑘

𝑥 + 𝑘

𝑛

𝑘=1

 

2. Euler Representation: 

The number 𝑛 can be represented in the following way: 

𝑛 =
2

1
∙

3

2
∙

4

3
⋯

𝑛

𝑛 − 1
= ෑ

𝑘 + 1

𝑘

𝑛−1

𝑘=1

 

Multiplying the product with the term at 𝑛 and its reciprocal: 

𝑛 = ෑ
𝑘 + 1

𝑘

𝑛−1

𝑘=1

∙
𝑛 + 1

𝑛
∙

𝑛

𝑛 + 1
=

𝑛

𝑛 + 1
ෑ

𝑘 + 1

𝑘

𝑛

𝑘=1

 



Plugging this representation of 𝑛 into the Gauss representation gives the 

Euler representation: 

Γ(𝑥) =
1

𝑥
lim

𝑛→∞
൬1 −

1

𝑛 + 1
൰

𝑥

ෑ ൬1 +
1

𝑘
൰

𝑥𝑛

𝑘=1

ෑ
𝑘

𝑥 + 𝑘

𝑛

𝑘=1

 

∴ Γ(𝑥) =
1

𝑥
 ෑ

ቀ1 +
1
𝑘

ቁ
𝑥

1 +
𝑥
𝑘

∞

𝑘=1

 

3. Weierstrass Representation 

The final and most interesting representation of the Gamma function is 

due to Weierstrass. We will start with the Gauss representation, and 

write 𝑛𝑥 as exp(𝑥 ln 𝑛). 

Γ(𝑥) =
1

𝑥
lim

𝑛→∞
exp(𝑥 ln 𝑛) ෑ

𝑘

𝑥 + 𝑘

𝑛

𝑘=1

 

Γ(𝑥) =
1

𝑥
lim

𝑛→∞
exp (𝑥𝐻𝑛 − 𝑥𝐻𝑛 + 𝑥 ln 𝑛) ෑ

𝑘

𝑥 + 𝑘

𝑛

𝑘=1

 

𝑤ℎ𝑒𝑟𝑒 𝐻𝑛 𝑖𝑠 𝑡ℎ𝑒 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑠𝑒𝑟𝑖𝑒𝑠, 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 ෍
1

𝑘

𝑛

𝑘=1

 

Further algebraic manipulation yields: 

⟹ Γ(𝑥) =
1

𝑥
lim

𝑛→∞
exp (𝑥𝐻𝑛)exp (𝑥(ln 𝑛 − 𝐻𝑛)) ෑ

𝑘

𝑥 + 𝑘

𝑛

𝑘=1

 

⟹ Γ(𝑥) =
1

𝑥
lim

𝑛→∞
exp (𝑥 ෍

1

𝑘

𝑛

𝑘=1

)exp (𝑥(ln 𝑛 − 𝐻𝑛)) ෑ
𝑘

𝑥 + 𝑘

𝑛

𝑘=1

 

⟹ Γ(𝑥) =
1

𝑥
lim

𝑛→∞
ෑ exp ቀ

𝑥

𝑘
ቁ

𝑛

𝑘=1

exp (𝑥(ln 𝑛 − 𝐻𝑛)) ෑ
𝑘

𝑥 + 𝑘

𝑛

𝑘=1

 

The limiting difference between the Harmonic series and the natural 

logarithm is equal to what is known as the Euler-Mascheroni constant, 

𝛾 = lim
𝑛→∞

(𝐻𝑛 − ln 𝑛). 

 



In light of this information, we can conclude that: 

∴ Γ(𝑥) =
𝑒−𝛾𝑥

𝑥
ෑ 𝑒

𝑥
𝑘 ቀ1 +

𝑥

𝑘
ቁ

−1
∞

𝑘=1

 

These different representations are going to be useful when deriving 

relationships involving the Gamma function, one of which is Euler’s 

reflection formula. 

 

Euler’s Reflection Formula 

Perhaps the most important and useful functional equation of the gamma 

function is Euler’s reflection formula, which I will derive now using the 

Euler representation of the gamma function along with the infinite product 

representation of sin 𝜋𝑥.  

We will begin by considering Γ(𝑥)Γ(1 − 𝑥), which is equivalent to 

(−𝑥)Γ(−𝑥)Γ(𝑥). 

⟹ −𝑥Γ(−𝑥)Γ(𝑥) =
1

𝑥
 ෑ

ቀ1 +
1
𝑘

ቁ
𝑥

1 +
𝑥
𝑘

∞

𝑘=1

 ෑ
ቀ1 +

1
𝑘

ቁ
−𝑥

1 −
𝑥
𝑘

∞

𝑘=1

 

⟹ Γ(𝑥)Γ(1 − 𝑥) =
1

𝑥
 ෑ

1

1 −
𝑥2

𝑘2

∞

𝑘=1

 

This product is very similar to the infinite product representation of 

sin 𝜋𝑥, which is: 

sin 𝜋𝑥 = 𝜋𝑥 ෑ 1 −
𝑥2

𝑘2

∞

𝑘=1

 

Taking the reciprocal of both sides gives: 

1

sin 𝜋𝑥
=

1

𝜋𝑥
ෑ

1

1 −
𝑥2

𝑘2

∞

𝑘=1

 

Multiplying both sides by 𝜋 gives: 



𝜋

sin 𝜋𝑥
=

1

𝑥
ෑ

1

1 −
𝑥2

𝑘2

∞

𝑘=1

 

In conclusion: 

Γ(𝑥)Γ(1 − 𝑥) =
𝜋

sin 𝜋𝑥
 

∴ Γ(𝑥)Γ(1 − 𝑥) = πcsc 𝜋𝑥 

We can use this result to calculate the value of ቀ−
1

2
ቁ !. Plugging in 𝑥 =

1

2
 

into Euler’s reflection formula gives: 

Γ ൬
1

2
൰ Γ ൬1 −

1

2
൰ = πcsc

𝜋

2
= 𝜋 

Γ ൬
1

2
൰

2

= 𝜋, ∴ Γ ൬
1

2
൰ = ξ𝜋 

This surprising result enables us to determine other values of the 

gamma function using its recursive definition. For example: 

Γ ቀ
3

2
ቁ = Γ ቀ

1

2
+ 1ቁ =

1

2
Γ ቀ

1

2
ቁ , ∴ Γ ቀ

3

2
ቁ =

ξ𝜋

2
,  

Γ ൬
5

2
൰ = Γ ൬

3

2
+ 1൰ =

3

2
Γ ൬

3

2
൰ , ∴ Γ ൬

5

2
൰ =

3ξ𝜋

4
,   𝑒𝑡𝑐. 

 

Gamma Function’s Relation to Other Functions 

There exist interesting equations that relate the gamma function to other 

special functions. These relationships are often quite surprising, because it 

is usually not immediately obvious that gamma function is related to other 

famous functions. The said famous functions I would like to explore now 

are the following: 

1. Reimann Zeta Function 

We will start with the following integral: 

න
𝑡𝑥−1

𝑒𝑡 − 1
𝑑𝑡

∞

0

 

The first step is to multiply the integrand’s numerator and denominator by 

𝑒−𝑡 .  



න
𝑡𝑥−1

𝑒𝑡 − 1
𝑑𝑡 =

∞

0

න
𝑡𝑥−1𝑒−𝑡

1 − 𝑒−𝑡
𝑑𝑡

∞

0

 

Using 
1

1−𝑟
= ∑ 𝑟𝑘∞

𝑘=0 , we can rewrite 
1

1−𝑒−𝑡
 as ∑ (𝑒−𝑡)𝑘∞

𝑘=0 . Plugging this into 

the integral gives: 

න
𝑡𝑥−1𝑒−𝑡

1 − 𝑒−𝑡
𝑑𝑡

∞

0

= න ෍ 𝑒−𝑘𝑡𝑡𝑥−1𝑒−𝑡

∞

𝑘=0

𝑑𝑡
∞

0

 

Once again, assuming that the order of summation and integration are 

interchangeable, we can rewrite the integral as: 

න ෍ 𝑒−𝑘𝑡𝑡𝑥−1𝑒−𝑡

∞

𝑘=0

𝑑𝑡
∞

0

= ෍ න 𝑡𝑥−1𝑒−(𝑘+1)𝑡𝑑𝑡   
∞

0

∞

𝑘=0

 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛: 𝑙𝑒𝑡 𝑢 = (𝑘 + 1)𝑡, 𝑑𝑢 = (𝑘 + 1)𝑑𝑡 

෍ න 𝑡𝑥−1𝑒−(𝑘+1)𝑡𝑑𝑡 = ෍
1

(𝑘 + 1)𝑥
න 𝑢𝑥−1𝑒−𝑢𝑑𝑢

∞

0

∞

𝑘=0

   
∞

0

∞

𝑘=0

 

෍
1

(𝑘 + 1)𝑥
= ෍

1

𝑘𝑥
= 𝜁(𝑥), 𝑎𝑛𝑑  Γ(𝑥) = න 𝑢𝑥−1𝑒−𝑢𝑑𝑢

∞

0

 

∞

𝑘=1

∞

𝑘=0

 

∴ න
𝑡𝑥−1

𝑒𝑡 − 1
𝑑𝑡 = 𝜁(𝑥)Γ(𝑥)

∞

0

, 

where 𝜁(𝑥) is the Reimann zeta function. This relationship provides 

another alternative representation of the gamma function in terms of the 

Reimann zeta function as: 

Γ(𝑥) =
1

𝜁(𝑥)
න

𝑡𝑥−1

𝑒𝑡 − 1
𝑑𝑡

∞

0

 

Not only does this relationship provide a new way of expressing the gamma 

function, but it also enables us to find a general solution of the integral for 

different values of 𝑥. For instance, it is well known that 𝜁(2) =
𝜋2

6
 and 

Γ(2) = 1. Using this we get: 

1 =
6

𝜋2
න

𝑡2−1

𝑒𝑡 − 1
𝑑𝑡

∞

0

 

We can easily solve for the integral to obtain: 



න
𝑡

𝑒𝑡 − 1
𝑑𝑡

∞

0

=
𝜋2

6
 

2. Dirichlet Eta Function 

A similar process can be carried out to obtain a similar equation that links 

the Gamma function with Dirichlet eta function. The result is the following: 

න
𝑡𝑥−1

𝑒𝑡 + 1
𝑑𝑡 = 𝜂(𝑥)Γ(𝑥)

∞

0

, 

where 𝜂(𝑥) is the Dirichlet eta function defined as 𝜂(𝑥) = ∑
(−1)𝑘−1

𝑘𝑥
∞
𝑘=1 . 

Using the fact that 𝜂(𝑥) = (1 − 21−𝑥)𝜁(𝑥), we can rewrite this equation as: 

න
𝑡𝑥−1

𝑒𝑡 + 1
𝑑𝑡 = (1 − 21−𝑥)𝜁(𝑥)Γ(𝑥)

∞

0

 

This equation can be used to evaluate integrals of the form ׬
𝑡𝑥−1

𝑒𝑡+1
𝑑𝑡

∞

0
. For 

example, letting 𝑥 = 2 yields: 

න
𝑡2−1

𝑒𝑡 + 1
𝑑𝑡 = 𝜂(2)Γ(2) = (1 − 21−2)𝜁(2)Γ(2)

∞

0

 

∴ න
𝑡

𝑒𝑡 + 1
𝑑𝑡 =

𝜋2

12

∞

0

 

3. Beta Function (Euler Integral of the First Kind)  

Beta function is a multivariable function defined in terms of the Gamma 

function. To derive it, we will start with the following product of two 

gamma functions. 

Γ(𝑥)Γ(𝑦) = න 𝑡𝑥−1𝑒−𝑡𝑑𝑡 න 𝑟𝑦−1𝑒−𝑟𝑑𝑟
∞

0

∞

0

= ඵ 𝑡𝑥−1 𝑟𝑦−1 𝑒−(𝑡+𝑟) 𝑑𝑟𝑑𝑡

∞

0

 

Introducing the substitution 𝑟 = 𝑢𝑣 and 𝑡 = 𝑢(1 − 𝑣) requires the 

deduction of the new limits of integration, and 𝑑𝑟𝑑𝑡. 

To determine the new limits of integration, we will start by noticing that 𝑟 

and 𝑡 are both greater than 0. This means that 𝑢 and 𝑣 too must be greater 

than 0. However, 𝑣 must also be less than 1, because otherwise t would be 

less than 0. To sum up: 𝑢 > 0 and 0 < 𝑣 < 1.  



To determine 𝑑𝑟𝑑𝑡, we have to evaluate the determinant of the Jacobian 

matrix. 

ተ

𝜕𝑟

𝜕𝑣

𝜕𝑟

𝜕𝑢
𝜕𝑡

𝜕𝑣

𝜕𝑡

𝜕𝑢

ተ = ቚ
𝑢 𝑣

−𝑢 1 − 𝑣
ቚ = 𝑢 

Therefore Γ(𝑥)Γ(𝑦) becomes: 

Γ(𝑥)Γ(𝑦) = න න 𝑢𝑥+𝑦−1 𝑒−𝑢 𝑣𝑦−1 (1 − 𝑣)𝑥−1𝑑𝑢𝑑𝑣
1

0

∞

0

 

Γ(𝑥)Γ(𝑦) = න 𝑢𝑥+𝑦−1 𝑒−𝑢
∞

0

𝑑𝑢 න 𝑣𝑦−1 (1 − 𝑣)𝑥−1𝑑𝑣
1

0

 

Using the integral definition of the gamma function, we can deduce that: 

Γ(𝑥)Γ(𝑦) = Γ(x + y) න 𝑣𝑦−1 (1 − 𝑣)𝑥−1𝑑𝑣
1

0

, 

where  ׬ 𝑣𝑦−1 (1 − 𝑣)𝑥−1𝑑𝑣
1

0
 is defined to be the Beta function, Β(𝑥, 𝑦). 

We can therefore express the beta function in terms of the gamma function: 

Β(𝑥, 𝑦) =
Γ(𝑥)Γ(𝑦)

Γ(𝑥 + 𝑦)
 

Beta function also has an equivalent trigonometric form, which is extremely 

useful when evaluating trigonometric integrals. To derive it we will use the 

substitution 𝑣 = sin2 𝜃 , 𝑑𝑣 = 2 sin 𝜃 cos 𝜃 𝑑𝜃. 

න 𝑣𝑦−1 (1 − 𝑣)𝑥−1𝑑𝑣
1

0

= න sin2𝑦−2 𝜃 cos2𝑥−2 𝜃 2 sin 𝜃 cos 𝜃 𝑑𝜃

𝜋
2ൗ

0

 

∴ Β(𝑥, 𝑦) = 2 න sin2𝑦−1 𝜃 cos2𝑥−1 𝜃 𝑑𝜃

𝜋
2ൗ

0

 

Notice that the places of 𝑥 and 𝑦 can be switched without changing the 

result, due to the Beta function’s symmetry. 

To demonstrate the practicality of this form of the beta function, I would 

like to use it to solve an integral, which requires a relatively large amount of 

tedious work to be solved using standard methods of integration.   

Consider: 



න ξtan 𝑥

𝜋
2ൗ

0

𝑑𝑥 = න sin
1
2 𝑥 cos−

1
2 𝑥 𝑑𝑥

𝜋
2ൗ

0

 

When written in this form, it is apparent that the integral is equal to 
1

2
Β ቀ

3

4
,

1

4
ቁ. Therefore, we can deduce that: 

න sin
1
2 𝑥 cos−

1
2 𝑥 𝑑𝑥

𝜋
2ൗ

0

=
1

2
Β ൬

3

4
,
1

4
൰ =

Γ ቀ
3
4ቁ Γ ቀ

1
4ቁ

2Γ(
3
4

+
1
4

)
 

Using Euler’s reflection formula: 

Γ ቀ
3
4ቁ Γ ቀ

1
4ቁ

2
=

1

2
Γ ൬

3

4
൰ Γ ൬1 −

3

4
൰ =

𝜋

2
csc

3𝜋

4
=

𝜋ξ2

2
 

∴ න ξtan 𝑥

𝜋
2ൗ

0

𝑑𝑥 =
𝜋ξ2

2
 

4. Digamma Function 

Digamma function is defined as the derivative of the natural logarithm of 

Γ(𝑥). 

𝜓(𝑥) ∶=
𝑑

𝑑𝑥
ln Γ(𝑥) 

Using the Weierstrass definition of the gamma function, we can express the 

reciprocal of the Gamma function as the following: 

1

Γ(𝑥)
= 𝑥𝑒𝛾𝑥 ෑ ൬

𝑘 + 𝑥

𝑘
൰ 𝑒−

𝑥
𝑘

∞

𝑘=1

 

Taking the natural logarithm of both sides gives: 

⟹ − ln Γ(𝑥) = ln 𝑥 + 𝛾𝑥 + ෍ ln ൬
𝑘 + 𝑥

𝑘
൰ −

𝑥

𝑘

∞

𝑘=1

 

⟹ ln Γ(𝑥) = −ln 𝑥 − 𝛾𝑥 + ෍  
𝑥

𝑘

∞

𝑘=1

− ln ൬
𝑘 + 𝑥

𝑘
൰ 

Differentiating both sides gives the following expression for the Digamma 

function: 



𝜓(𝑥) = −
1

𝑥
− 𝛾 + ෍

1

𝑘
−

1

𝑘 + 𝑥

∞

𝑘=1

 

Derivative of the Gamma function shows up frequently in different 

branches of mathematics. In fact, it is commonly represented in terms of the 

Digamma function to make its evaluation easier at particular values of 𝑥. 

This representation is as follows: 

Γ′(𝑥) = Γ(𝑥)𝜓(𝑥) 

Calculating the values of 𝜓(𝑥) at integer values of 𝑥 is an interesting 

process, one that involves harmonic series, which we have previously 

discussed when deriving the Weierstrass representation of Γ(𝑥) (this is 

why I took the time to derive it). 

To find a general expression for 𝜓(𝑛), where 𝑛 is an integer, we will start by 

splitting the sum in the definition of 𝜓(𝑥) as follows: 

⟹ 𝜓(𝑛) = −
1

𝑛
− 𝛾 + ෍  

1

𝑘
−

1

𝑘 + 𝑛

𝑛

𝑘=1

+ ෍
1

𝑘
 −

1

𝑘 + 𝑛

∞

𝑘=𝑛+1

 

It becomes apparent that the sums are telescoping once we take a look at 

the partial sums: 

ቂ1 −
1

𝑛+1
+

1

2
−

1

𝑛+2
± ⋯ +

1

𝑛
−

1

2𝑛
ቃ + ቂ

1

𝑛+1
−

1

2𝑛+1
+

1

𝑛+2
−

1

2𝑛+2
± ⋯ ቃ  

The partial sums cancel out to give 𝐻𝑛 (harmonic series), producing the 

following expression for 𝜓(𝑛): 

𝜓(𝑛) = −
1

𝑛
− 𝛾 + ෍

1

𝑘

𝑛

𝑘=1

 

Since the nth harmonic number is 
1

𝑛
, the final term in the sum can be taken 

out of the sigma notation to cancel with the −
1

𝑛
  term, giving the following 

final equation: 

𝜓(𝑛) = −𝛾 + ෍
1

𝑘

𝑛−1

𝑘=1

, 𝑜𝑟 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑙𝑦:  𝜓(𝑛) = −𝛾 + 𝐻𝑛−1 

We can therefore express the derivative of the Gamma function at integer 

values as: 



Γ′(𝑛) = (−𝛾 + 𝐻𝑛−1)(n − 1)! 

For example, Γ′(2) is equal to (−𝛾 + 𝐻2−1)(2 − 1)!, which evaluates to     

1 − 𝛾, and Γ′(3) is equal to (−𝛾 + 𝐻3−1)(3 − 1)!, which evaluates to 3 − 2𝛾. 

 

Interesting Problems Involving the Gamma Function 

The Gamma function and the other identities that we have derived so far 

come in handy when solving seemingly unrelated problems. Making use of 

the gamma function simplifies many problems and provides beautiful 

solutions. I would now like to work through a few problems to demonstrate 

this. 

• Problem 1 

𝐸𝑣𝑎𝑙𝑢𝑒𝑎𝑡𝑒 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙: 

න
𝑑𝑥

𝑥𝑛 + 1

∞

0

 

To solve this problem, we will make use of the Leibniz integral rule as we 

did before.  

⟹ 𝑙𝑒𝑡 𝐼 = න
𝑑𝑥

𝑥𝑛 + 1
      𝑙𝑒𝑡 𝐼(𝑡) =

∞

0

න
1

𝑥𝑛 + 1
𝑒−(𝑥𝑛+1)𝑡𝑑𝑥

∞

0

 

Introducing the parameter 𝑡 in this way is a little counterintuitive, but it will 

make the calculation way easier. 

 

⟹
𝑑𝐼(𝑡)

𝑑𝑡
= න

𝜕

𝜕𝑡
൬

1

𝑥𝑛 + 1
𝑒−(𝑥𝑛+1)𝑡൰

∞

0

𝑑𝑥 = − න 𝑒−(𝑥𝑛+1)𝑡
∞

0

𝑑𝑥 

⇒
𝑑𝐼(𝑡)

𝑑𝑡
= 𝑒−𝑡 න 𝑒−𝑡𝑥𝑛

𝑑𝑥
∞

0

 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛: 𝑙𝑒𝑡 𝑢 = 𝑡𝑥𝑛, 𝑑𝑢 = 𝑡𝑛𝑥𝑛−1𝑑𝑥,       𝑑𝑥 =
1

𝑛
 𝑡−

1
𝑛 𝑢

1
𝑛

 − 1𝑑𝑢 

𝑑𝐼(𝑡)

𝑑𝑡
= −

1

𝑛
 𝑡−

1
𝑛𝑒−𝑡 න 𝑢

1
𝑛

−1𝑒−𝑢𝑑𝑢
∞

0

 

 



Since ׬ 𝑢
1

𝑛
−1𝑒−𝑢𝑑𝑢 = Γ ቀ

1

𝑛
ቁ

∞

0
, we get: 

𝑑𝐼(𝑡)

𝑑𝑡
= −

1

𝑛
 𝑡−

1
𝑛𝑒−𝑡Γ ൬

1

𝑛
൰ 

To get back to the goal integral, 𝐼, we will integrate 
𝑑𝐼(𝑡)

𝑑𝑡
 with respect to 𝑡 

from 0 to infinity. This gives the following result by the fundamental 

theorem of calculus: 

𝐼 =
1

𝑛
Γ ൬

1

𝑛
൰ න  𝑡−

1
𝑛𝑒−𝑡

∞

0

𝑑𝑡 

Since ׬  𝑡−
1

𝑛𝑒−𝑡∞

0
𝑑𝑡 = Γ ቀ1 −

1

𝑛
ቁ, we get: 

𝐼 =
1

𝑛
Γ ൬

1

𝑛
൰ Γ ൬1 −

1

𝑛
൰ 

Using Euler’s reflection formula, we can conclude that: 

𝐼 = න
𝑑𝑥

𝑥𝑛 + 1

∞

0

=
𝜋

𝑛
csc ቀ

𝜋

𝑛
ቁ 

We made use of the integral definition of the Gamma function, and Euler’s 

reflection formula to arrive at this result, which is an interesting 

generalisation. Beta function could be used in an alternative solution to this 

integral, which also relies on the gamma function.  

 

• Problem 2 

𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑙𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚 𝑜𝑓 𝑡, ℒሼln 𝑡ሽ. 

 

ℒሼln 𝑡ሽ is defined as: 

ℒሼln 𝑡ሽ = න ln 𝑡 𝑒−𝑠𝑡𝑑𝑡
∞

0

 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛: 𝑙𝑒𝑡 𝑢 = 𝑠𝑡, 𝑑𝑢 = 𝑠𝑑𝑡 

ℒሼln 𝑡ሽ =
1

𝑠
න ln

𝑢

𝑠
𝑒−𝑢𝑑𝑡 =

1

𝑠
ቈන ln 𝑢 𝑒−𝑢𝑑𝑢 − ln 𝑠 න 𝑒−𝑢𝑑𝑢

∞

0

∞

0

቉
∞

0

 

 



The hardest part of finding ℒሼln 𝑡ሽ is evaluating ׬ ln 𝑢 𝑒−𝑢𝑑𝑢
∞

0
, which 

cannot be solved using standard methods of integration. To solve this 

integral, we will first take a look at the derivative of the Gamma function. 

We will once again use differentiation under the integral sign. 

Γ′(𝑥) = න
𝜕

𝜕𝑥
(𝑡𝑥−1 𝑒−𝑡)𝑑𝑡 = න 𝑡𝑥−1 ln 𝑡 𝑒−𝑡𝑑𝑡

∞

0

∞

0

 

It can be seen that ׬ ln 𝑢 𝑒−𝑢𝑑𝑢
∞

0
 is equal to the derivative of the gamma 

function at 𝑥 = 1. To evaluate Γ′(1), we need to make use of the formula we 

derived using digamma function for Γ′(𝑥) at integer values: 

Γ′(1) = (−𝛾 + 𝐻𝑛−1)(n − 1)! 

∴ Γ′(1) = −𝛾 

We can now conclude that: 

න ln 𝑢 𝑒−𝑢𝑑𝑢
∞

0

= −𝛾 

This result finally allows us to find the Laplace transform of ln 𝑡. 

ℒሼln 𝑡ሽ =
1

𝑠
ቈ−𝛾 − ln 𝑠 න 𝑒−𝑢𝑑𝑢

∞

0

቉ 

∴ ℒሼln 𝑡ሽ = −
𝛾 + ln 𝑠

𝑠
 

 

• Problem 3 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙, න 𝑒−𝑥2
𝑑𝑥

∞

−∞

, 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑔𝑎𝑚𝑚𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 

We can use the fact that Γ ቀ
1

2
ቁ = ξ𝜋 to calculate the value of the Gaussian 

integral. 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 = න 𝑒−𝑥2
𝑑𝑥

∞

−∞

,   𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛: 𝑙𝑒𝑡 𝑥 = ξ𝑡, 𝑑𝑥 =
𝑑𝑡

2ξ𝑡
  

න 𝑒−𝑥2
𝑑𝑥

∞

−∞

= 2 න
1

2𝑡
1
2

𝑒−𝑡𝑑𝑡 = න 𝑡−
1
2𝑒−𝑡𝑑𝑡 = Γ ൬

1

2
൰

∞

0

∞

0

 



∴ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 = න 𝑒−𝑥2
𝑑𝑥

∞

−∞

= ξ𝜋 

I believe this is a very elegant method of evaluating the Gaussian integral, 

because it does not rely on polar coordinates and double integrals.  

 

Conclusion 

The interesting problem of finding a generalisation of the factorial led to 

finding a function that is an extension of the factorial to real numbers, 

which is Γ(𝑥). We then found four different representations of this function, 

and used them to derive an interesting result: Euler’s reflection formula, 

which relates a product of gamma functions to a trigonometric function. 

This alone is a very interesting finding, because the Gamma function and 

trigonometric functions do not even seem remotely related, yet we 

managed to connect them somehow.  

We then derived two other functions that are closely related to the gamma 

function: the Beta function and the Digamma function, both of which proved 

useful when evaluating certain integrals. Furthermore, we found interesting 

relations of the gamma function to the Reimann zeta function and the 

Dirichlet eta function, which are both extremely important in analytic 

number theory. Given the fact that the million-dollar problem of the 

Reimann Hypothesis is all about the Reimann zeta function, I believe it is 

safe to say that the Gamma function might play a role in solving it. 

We finally put our findings into practice by solving three problems. These 

problems demonstrated the practicality of the gamma function and the 

other results we have arrived at. We combined many other different tools 

from mathematics along the way, including the Leibniz integral rule, 

Laplace transform and Taylor series. 

There are so many more applications of the gamma function, including 

gamma distribution from statistics and quantum physics, which I did not 

even begin to explain. The Gamma function’s relations to other functions 

are not limited to the ones I demonstrated. It is connected to many other 

functions in many other ways. I also limited the gamma function’s inputs to 

real numbers; however, it is possible to extend it to complex numbers as 

well. In short: the gamma function shows up constantly in mathematics. It 

was impossible for me to explain everything about it, so I picked my 

favourites to include.  



Despite not including everything I had in mind, I believe I managed to 

emphasise the importance and beauty of extending a simple concept into a 

larger set of numbers using the Gamma function as a generalisation of the 

factorial. This is therefore one of my favourite concepts in mathematics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 


