
Monte Carlo Simulations

Tristan Hodgson

Thursday, 16 February 2023

1 What is the Monte Carlo Method

If I tossed a coin five times, and it came up heads on all five times, you might assume that I am lucky since
the probability is only about 3%. However, if I tossed a coin 100 times and got 100 heads, now you would
likely accuse me of cheating since the chance of that happening is about 8× 10−31. The reason for this is that
you are, intuitively, seeing the result of something called the Law of Large Numbers, which means that as the
number of coin tosses increases, the proportion of heads should tend towards the probability of getting a head
(i.e. 0.5). It is this law that a rather interesting piece of statistical analysis uses to allow us to vastly simplify
a large number of calculations across a range of fields.

Figure 1: A flowchart of the basic process that we follow when performing a Monte Carlo simulation.

A Monte Carlo simulation is a repetitive process of random generation of inputs, simulation and evaluation,
as shown in the flowchart in figure 1. It is, however, perhaps best understood through an example. Figure 2
shows a graphical representation of a Monte Carlo simulation to determine the value of π. A computer randomly
generates numbers between -1 and 1 for both the x and y coordinates, then plots these points and colours them
blue if it is within the circle and red if now. It determines whether a point is inside or outside of the equation
by seeing whether the logical expression shown in equation 1 is true or false.

x2 + y2 ≤ 1 (1)

I like this example because it shows the relative simplicity of Monte Carlo simulations and how such simula-
tions are always an approximation. For example, when we used 30,000 samples (or, in other words, repeated the
experiment 30,000 times), as shown on the graph, we achieved a value of π = 3.1376, at a percentage error of
just 0.127%, increasing the number of samples would decrease this error but increase the amount of computation
required1. While this is good, it is certainly far from the best method of calculating π as computers are capable

1Please note that this value is dependant on the specific run, due to the use of random numbers, replicating this result with the
code below will likely yield slightly different results.

1

Figure 2: A graph of the random points generated by the algorithm to find pi; the red points are outside of the
circle, the blue points are on or within the circle.

of far higher degrees of accuracy using other methods2. As such, Monte Carlo simulations are seldom used to
calculate π, outside of demonstrations of the theory as we have done, and instead are used to find approximate
solutions where finding exact solutions would be impractical.

2 History and Early Uses

Scholars debate the earliest use of the Monte Carlo method; one notable early use is approximating the value
of the definite integrals involved in the nuclear chain reaction of the Atomic Bombs on the Manhattan project.
These calculations are similar to the example above where we calculated π since both use an inequality to
determine whether a specific coordinate is inside or outside the function and then calculate the proportion of
points inside compared to outside (see equation 2).

y ≤ f(x) (2)

Using this method allowed the scientists on the Manhattan project to approximate the probability that a
neutron produced from a uranium atom undergoing fission would collide with another uranium atom to cause
a chain reaction of nuclear fission, leading to a nuclear explosion. By simplifying these calculations, using the
Monte Carlo method, scientists could calculate the probability of a chain reaction occurring.

Its use in the Manhattan Project is interesting because the scientists did not know the value (unlike when we
used it to find the value of π). As a result, they had to trust that they had done their Monte Carlo simulation
correctly and that it would give them a valid approximation.

3 Modern Uses

The most prevalent modern use of the Monte Carlo method centres around uncertainty calculations. When
taking any measurement, there is an associated uncertainty; for example, if you read a temperature using a
thermometer, you cannot measure the difference between 21.4°C and 21.5°C (unless you have a very expensive
thermometer); hence, if you read off 21.5°C then we don’t know if the temperature is actually 21.4°C. Thus, we
have an uncertainty in our value.

Traditionally, if you are calculating with uncertainty, you can do what’s known as a worst-on-worst calcu-
lation; by picking the worst possible value within the uncertainty range for each input and using these values
for the simulation. However, with the Monte Carlo method, what we can do instead is randomise the inputs
within their uncertainty range, run our simulation and then repeat.

2Google found 100 trillion digits of π and even inputting just the first term of the equation they used gave me π correct to 10
decimal places, the maximum number my calculator will show, in under a second

2

The advantage of the Monte Carlo method over the worst-on-worst effect method is that the Monte Carlo
method is better at dealing with situations that have a low margin of error since continually taking the worst
possible value will result in a scenario with an exceptionally low probability, where a Monte Carlo simulation
will show all likely cases.

It is perhaps easier to see quite what this means with an example. In weather prediction, we use a technique
called ensemble forecasting, which is a form of Monte Carlo simulation. Let’s return to our thermometer; let’s
say that this thermometer is accurate to the nearest degree hence all values for 20.5°C to 21.5°C will be read
as 21°C. We might have a couple hundred of these thermometers over a country feeding back for us to predict
the temperature in the future. Since all the thermometers will have the same uncertainty, this will quickly add
up, making our final prediction little more than an educated guess. So what we do is we do a Monte Carlo
simulation and randomise all of the temperature values between the uncertainty range (in our case, between
20.5°C and 21.5°C) and run our simulations using these results, repeat this many times, and take an average of
our results.

While predicted weather is far more complicated than this, the principle of ensemble forecasting is one that
weather agencies across the world use and is arguably the main reason why the Met Office can claim to be able
to predict tomorrow’s temperature to the nearest 2°C 92% of the time.

Similarly, NASA uses Monte Carlo simulations for their trajectory data due to the low margin of error in
space flight. While NASA could spend billions of dollars and tens of thousands of hours of engineering time
reducing the uncertainty on their measuring equipment so they could use the worst-on-worst method, they are
much better off simply using a Monte Carlo simulation to see whether the trajectories are likely to work.

4 Limitations

The computational intensity of this method is vast–the Met Office has a supercomputer called Cray XC40 which
can do 14,000 trillion arithmetic operations per second. While the simulations involved in weather prediction
are complicated, and this does account for a lot of this computing power, another major reason for the use of
powerful computers like Cray is the need to perform every step of the calculation multiple times with slight
variations in the inputs. The use of these vastly expensive supercomputers can limit the accessibility of these
tools, at least in weather prediction (though as we showed earlier simple models can run on even the most basic
of computers).

Moreover, as you are no doubt aware, weather prediction is not always correct. In weather prediction, this
error caused by using an approximation is small (especially since using exact values is impossible since this
would necessitate the removal of uncertainty from our measurements) since even in the more life-and-death field
of storm prediction, the errors involved can be offset by simply being slightly overcautious and erring on the
side of warning too often rather than too rarely. However, as we saw with our approximation of π, the error
of our results can be high, particularly if we use a low number of samples. Therefore, we cannot implicitly
trust the data that comes out of a Monte Carlo simulation: we should always try to verify the results through
another method in conjunction with a Monte Carlo simulation when it is critical that the output is correct.

5 Conclusion

Monte Carlo simulations are undoubtedly a valuable method to scientists across all fields because of their
capability to reduce uncertainty and simplify calculations. While there are limitations to its use, where it is
applicable, it has affected the lives of billions and is a tool that is not talked about enough in the wider maths
community.

3

6 Code

1 from random import randint as rand

2 import matplotlib.pyplot as plt

3 import numpy as np

4

5

6 def gen_values(n):

7 summary = []

8 for i in range(0, n):

9 # Generate the x, y coords between -1 and 1

10 x = rand (-1000, 1000)

11 x = x/1000

12 y = rand (-1000, 1000)

13 y = y/1000

14

15 # Is the point in the circle

16 circle = x**2 + y**2

17 if circle > 1:

18 in_circle = False

19 else:

20 in_circle = True

21 coord = [x, y, in_circle]

22 summary.append(coord)

23 return summary

24

25

26 def plot(values):

27 x_true = []

28 y_true = []

29

30 x_false = []

31 y_false = []

32

33 for i in values:

34 # Prepare the coords for plotting

35 if i[2] == True:

36 x_true.append(i[0])

37 y_true.append(i[1])

38 else:

39 x_false.append(i[0])

40 y_false.append(i[1])

41 # Make the plot square

42 f = plt.figure ()

43 f.set_figwidth (10)

44 f.set_figheight (10)

45 # Plot the results in the circle

46 plt.scatter(x_true , y_true , color=’blue’, s=2)

47 # Plot the results outside the circle

48 plt.scatter(x_false , y_false , color=’red’, s=2)

49 # Show the plot

50 plt.show()

51

52

53 def calculate_pi(values):

54 # Numerate the number of points in and out of the circle

55 true_num = 0

56 false_num = 0

57 for i in values:

58 if i[2] == True:

59 true_num += 1

60 else:

61 false_num += 1

62 # Calculate the value of pi

63 pi = true_num / (true_num + false_num)

64 pi = pi * 4

65 return pi

66

67 # Normal mode , graph and calculate using 1 value for the number of points

68 data = gen_values (3*10**4)

69 print(calculate_pi(data))

70 plot(data)

4

7 Sources

Applying Monte Carlo Simulation to Launch Vehicle Design and Requirements Analysis by J.M.
Hanson and B.B. Beard p.g. 1-5 https://ntrs.nasa.gov/citations/20100038453 p.g. 1-5 A massive
document all about the use of Monte Carlo simulations at NASA, including detailed descriptions of what it is,
how it is used and some basic history.

Firmament–The Hidden Science of Weather, Climate Change, and the Air that Surrounds Us
by Simon Clark Contains, amongst a vast wealth of other things, an excellent description of how and why
ensemble forecasting work along with the birth of the understanding of chaos theory in climate science.

Monte Carlo Simulation by Science Direct https://www.sciencedirect.com/topics/economics-
econometrics-and-finance/monte-carlo-simulation
https://www.sciencedirect.com/topics/neuroscience/monte-carlo-method Two articles which sum-
marise a lot of information about Monte Carlo simulations and how they are used in the real world.

6. Monte Carlo Simulation by MIT OpenCourseWare
https://www.youtube.com/watch?v=OgO1gpXSUzU Contains an excellent description of the distinc-
tion between the Law of Large Numbers and the Gamblers fallacy.

A detailed proof of the Chudnovsky formula with means of basic complex analysis – Ein ausführlicher
Beweis der Chudnovsky-Formel mit elementarer Funktionentheorie by Lorenz Milla
https://arxiv.org/abs/1809.00533 Contains the equation that Google used to calculate 100 trillion digits
of π, only using 1 term got me at least 10 digits correct (my calculator doesn’t show more that 10 digits).

Monte Carlo method applied to approximating the value of π by nicoguaro.
https://en.wikipedia.org/wiki/Monte Carlo method#/media/File:Pi 30K.gif An amazing GIF of
how the percentage error of the approximation for the value of π changes as the number the number of points
increases.

Bayesian Statistics with Hannah Fry by Matt Parker https://www.youtube.com/watch?v=7GgLSnQ48os
The video that I used as a jumping off point for my research, contains a very good example that I didn’t touch
where Matt repeatedly throws balls at tables (and missing a lot).

Even more pi in the sky: Calculating 100 trillion digits of pi on Google Cloud by Emma Haruka
Iwao https://cloud.google.com/blog/products/compute/calculating-100-trillion-digits-of-pi-on-
google-cloud The annoucment post of how Google calculated π to 100 trillion digits.

5

https://ntrs.nasa.gov/citations/20100038453
https://www.sciencedirect.com/topics/economics-econometrics-and-finance/monte-carlo-simulation
https://www.sciencedirect.com/topics/economics-econometrics-and-finance/monte-carlo-simulation
https://www.sciencedirect.com/topics/neuroscience/monte-carlo-method
https://www.youtube.com/watch?v=OgO1gpXSUzU
https://arxiv.org/abs/1809.00533
https://en.wikipedia.org/wiki/Monte_Carlo_method#/media/File:Pi_30K.gif
https://www.youtube.com/watch?v=7GgLSnQ48os
https://cloud.google.com/blog/products/compute/calculating-100-trillion-digits-of-pi-on-google-cloud
https://cloud.google.com/blog/products/compute/calculating-100-trillion-digits-of-pi-on-google-cloud

	What is the Monte Carlo Method
	History and Early Uses
	Modern Uses
	Limitations
	Conclusion
	Code
	Sources

