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Astronomy is one of the oldest disciplines of natural science for exploring the motion of the planets, the
solar system and beyond. How was the solar system created? How old is the sun? Or how many stars
are in the Milky Way? These are just some questions among many that astronomers can answer.

The position, velocities and mass of astrophysical objects can be found using one the most prominent
and old branches of mathematics; geometry. Or rather, Astrometry. A very important branch in astronomy
is the study of planetary motion, from the days of Aristotle suggesting the geocentric model with the Earth
at the center, to Copernicus and Galileo advocating for the heliocentric model with the Sun at the center.

The subject was revolutionized by German mathematician and astronomer Johannes Kepler as he
introduced three laws in the 17th century which governed the motion of all planetary systems. We would
like to discuss briefly his findings and their numerous applications and how they lead to other fascinating
findings. It should be noted that the theorems are stated with respect to the Sun but these laws apply for
any orbital motion in space.

The three laws are as follows: the law of orbits, the law of equal areas, and the law of periods.
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Kepler’s first law: Each planet's orbit about the Sun is an ellipse with the Sun at a focus.

Not only does this allow us to predict trajectories and positions of planets and other moving bodies, it
disproved a common belief of a divine symmetry of the planets, which even Kepler believed, which stated
that orbits were circular.

Although Kepler came across this by examining numerous tables and statistical data, for our purposes we
can derive the laws from Newton’s Universal law of gravitation, taken from Principia.



We will not delve fully into the details of the first proof but we will give an introduction and show how it
might lead to some interesting properties.

Newton’s Universal Law of Gravitation states that every particle attracts every other particle in the
universe with force directly proportional to the product of their masses and inversely proportional to the
square of the distance between them.

Simply put, let us use our example of the Sun and an arbitrary planet. Let the Sun have mass M, and the
planet have mass m. Now the law uses the distance between the masses, say r. This suggests that one
should use polar coordinates for convenience. The constant of proportionality here is G, a known physical
constant. The force F, directed towards the sun can then be written as
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If we look at the following diagram with the following notation
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r = distance function of planet

a = acceleration of planet
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It is important to note here that the Sun is taken as the origin.

From these it follows that
s = rcosti+rsinfj
2)



Hence the unit vector in the direction of s can be written as

5, = cosfi + sin gJ
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Observing the direction of the force, as it is the Sun that is attracting the planet, we can redefine the force
F by writing it as a vector in the direction opposite of s with length
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Hence, we can write in combination with Newton’s second law of motion

F = —Gﬁi;n Sy = ma
This means
a = —GMs,
(4)

From this part of the proof we can make an interesting observation. The acceleration vector is always
parallel to the position vector of the planet and is directed towards the opposite direction. This means that
the acceleration is radial.

Using Kepler’s first law, we can also make observations about where perihelion (point closest to the sun)
and aphelion (point farthest from the sun) lie. Now we should mention some facts relating to ellipses. An
ellipse is a conic section. This means for every ellipse there exists a fixed point (called a focus) and a
fixed line (called the directrix) such that the ratio of the distance from an arbitrary point on the ellipse to
the focus and the perpendicular distance of that point to the directrix is constant. This constant is known
as the eccentricity of the ellipse. Given an ellipse of eccentricity e and distance from the focus to directrix
d, the polar equation of the ellipse is given by the following equation. We also have 0 < e < 1.
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We can easily find the largest and smallest values of r, they are given correspondingly
ed ed
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So we can see that there is perihelion when 6 = 0 and aphelion when 6 = Tr.



Note that in the diagram at the beginning, the diagram is rotated by 1T radian hence the values for 8 are
switched. Using the property of radial acceleration, we can deduce Kepler’s second law which we state
now.

Kepler’s second law: The radius vector drawn from the Sun to the planet sweeps out equal areas in
equal intervals of time.

To show this visually, let us consider any three separate instants t4,t,and t3. Kepler’s second law says
that the area of the region of the ellipse from t; to t+t;and the area of the region of the ellipse from t3to
t3+ towill be equal.
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Figure 3

This statement is equivalent to saying that the derivative of the Area function of the ellipse (the function
which gives us the area of a certain region) is constant. To prove this we will use a theorem which allows
us to compute area in polar coordinates. The theorem is stated as follows:

Let r = f(0) be the equation of the polar function r, continuous on an interval [a,B], where B - a < 21. Then
the area of the region bounded by f(0) as 0 varies over the interval [a,B] is given by the formula
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Now we cannot directly apply this formula to (2), as r and 0 are both functions of time. Let r = f(t) and 0 =
g(t).

Assume r can be written as a function of 0, say r = R(0). We wish to find the area, say A, over the interval
[a,t] for some a as time t varies. Then the formula for area becomes
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Differentiating both sides, using the chain rule and the first fundamental theorem of calculus we have
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Substituting g(t) by 6 and substituting R(8) by r we have
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So we have to show that this is constant.
Consider the following functions
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In conjunction with (2) and (3) we have
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It is worth noticing that s, is orthogonal to sg and both have length 1 hence they are linearly independent.
Comparing this with (4) we have
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Or, multiplying with r, we have
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Thus proving that dt s constant, proving Kepler’s second law.

Kepler’s third law: The squares of the orbital periods of planets are directly proportional to the cubes of
the semi-major axes of their orbits.



Let T be the time taken to complete one orbit, and let p be the length of the semi-major axis and let b be
the length of the semi-minor axis.
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Kepler’s third law states that
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We derive this from the following equations.

(a) Area of ellipse = wph
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Where k is the constant rate of increase in area shown in Kepler’s second law.

Equation (c) and Equation (d) use the following formulas, which can all be derived from the definition of
an ellipse and Kepler’s first law, but we will assume it is true for our purposes.
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This property has some interesting consequences. It shows that planets with smaller orbits have faster
periods. For example, Mercury takes 88 days to orbit the sun, the Earth takes 365 days, and Saturn takes
10,759 days.

Another property we find is that in any orbit, the time taken for one complete rotation is dependent only on
the mass of the central object and the length of the semi-major axis.

If a planet has moons, their orbital period can be used to determine the mass of the planet. Jupiter has
the maximum number of moons among all the planets in the solar system, thus an early measurement of
its mass was possible due to this reason.

We now give a few remarks about the orbital speed of planets.



We use the law of conservation of energy that states that energy is neither created or destroyed and total
energy is conserved at any point in the orbit. If we let v denote the speed function of a planet at each
point in the orbit and m denote its mass, we have the following. The position and the force are functions
of time.

Total energy = Kinetic energy + Potential energy
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Since this total energy is constant, we notice that when the planet is at perihelion, r is at its minimum, and
hence the speed is at its maximum, meaning it is at its fastest. Similarly we see that the speed is at its
minimum at aphelion, meaning it is at its slowest.

Violations: Even after proving each law, it seems that there is more to be found. Kepler’s first law stated
that planets move in an ellipse with the Sun at a foci, and it only makes sense that the position of
perihelion be constant.

But this is not always the case. Planetary orbits are not always perfect ellipses. This can be due to
perturbations produced by other neighboring objects with significant mass and gravitational pull. This led
French astronomer Urbain Le Verrier and British mathematician John Couch Adams to the discovery of
Neptune independently by observing perturbation in the orbit of Uranus.

It is also noticed that Mercury’s perihelion moves every year by a small angle. Even after accounting for
external gravitational force, there was an unaccounted shift in the angular position of the perihelion of 43
arc-seconds (0.01°) per century. This shift can be explained with the theory of general relativity,
according to which all orbits are not closed ellipses.

Existence of Dark Matter
If we observe a galaxy under the assumption that stars move in circular orbits or in orbits with low

eccentricity, we have centripetal acceleration a, or, we have the equation given below. (Note there is
uniform circular motion due to Kepler’s second law).



Combining this with the Universal Law of Gravitation and Newton’s second law of motion we have

GMm mu?
—— =ma = —
re r
5 M

i -
r
GAM

- V -
(10)

Where v is the speed, r is the distance from the center, m is the mass of the star and M is the mass of the
center.

We have that the speed is inversely proportional to the square root of the distance, hence as we consider
stars further from the galaxy’s center, we expect that speed will continue to decrease and will get very
close to zero.

However, this is not the case when we assume the homogeneous mass density of the galaxy is
somewhat constant, say £.

We know from Kepler’s third law and (7) that the mass M should be proportional to r cubed. Say

M = Myr®

Putting this into the equation we find

v =rv GMy
(11)

So the speed is directly proportional to the distance in the dense part of the galaxy, closer to the center.
Combining the above expressions of v, we plot v against r and get what is known as a galaxy rotation
curve. The cusp occurs more gradually as the density of the galaxy changes.
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But if we plot the observational data we see a different trend.

Vv (speed)

................
.........................

Expected Data

r (distance)

Figure 6

This phenomenon occurs even in the Milky Way. This shows that there may be more matter in galaxies
which we do not know about. This is called ‘dark matter’.

Concluding Remarks

The above examples show that when comparing expectations to reality, we find outliers, and these
outliers can be the milestones to fascinating discoveries. This happens often and can lead scientists to
think differently and reveal more about the universe.

Even though we used Newton’s law of gravitation as a vital tool in deriving Kepler’s laws, in reality it is
worth noting that Kepler published them in 1609, whereas Newton published the law of gravitation in
1687, influenced by Kepler’s discoveries.

It is easy to take these laws for granted but these laws uncover an incredible amount about the universe
and motion of planets and moving bodies in general. For being more precise in Astrometry, one would
need to apply the corrections derived using general relativity, but these laws alone will get you very far.
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