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To what extent do chaos theory and fractal geometry have applications to and 

implications on human physical health? 

Abstract 

Recent research into the nature of dynamical systems has led to a myriad of 

results detailing the existence of chaos and fractal geometry in almost all 

subjects imaginable. This essay aims to explore the applications of these two 

mathematical concepts to human physical health and what implications they may 

have on understanding with emphasis on epidemiology, fractal physiology and 

the heart.  

 

Introduction 

The study of nonlinear dynamics, more commonly described by the term ‘chaos theory’, is a 

recently popularised science which is increasingly being found to exist in all walks of life. 

Since its official discovery by meteorologist Edward Lorenz in the 1960s, the field has 

exploded with an incredible new scale of applications (Reeves, 2014). Paired with the 

advancements in fractal geometry by Benoit Mandelbrot, which followed in the 1970s, the 

question of the applications to, and implications on health has since arisen, prompting a new 

string of research involving these two mathematical concepts and medicine (Horgan, 2009). 

In this essay, these applications will be explored, as well as the extent of their implications, 

including how chaos could shape the future of health.   

Section 1 – An Introduction to Chaos Theory  

1.1 The discovery of chaos theory.  

Modern chaos theory was discovered in 1961, by Lorenz, whilst working on modelling 

weather systems at the Massachusetts Institute of Technology (Lorenz, 1963). Lorenz was 

striving to provide a model which could aid in longer-term weather prediction. As a result, he 

initially produced twelve differential equations, defining twelve dimensions or natural laws to 

be simulated (Gleick, 1998). Lorenz noticed that although there seemed to be near 

repetitions in his model, exact replications of previous trajectories never occurred. This 

corresponds with observations of the Earth’s atmosphere; although there may be similar 

occurrences, no day of weather exactly matches another.  
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At one point, Lorenz started his simulation differently, instead using a rounded value for a 

variable of 0.506 in place of the exact 0.506127. As the new simulation ran, its trajectory 

began to drastically diverge from the original, despite the miniscule scope of the alteration 

(Figure 1). This is what Lorenz coined 

‘sensitivity to initial conditions’, more 

colloquially known as ‘the butterfly effect’ 

due to him half-jokingly commenting that 

the flap of a butterfly’s wings could cause a 

tornado halfway across the globe.  

Chaos has since been defined differently by many; therefore, it is often more accurate to 

consider it through its characteristics: sensitivity to initial conditions, complex dynamics, and 

determinism all of which are displayed in Lorenz’s model (Kenkel & Walker 1996). 

By considering these characteristics, chaos suggests that with complete knowledge of the 

exact initial conditions of a system, any future state could be determined. Unfortunately, 

although this may be true, the impossibility of measuring initial conditions precisely quashes 

this hypothesis for practical prediction (Lorenz, 1963). This can then lead to a common 

misconception – that chaotic systems are unstable. Instead, the opposite is true; no matter 

how much interference and noise a dynamical system is injected with, it will return to and 

remain on a chaotic trajectory, making such systems 'locally unpredictable [but] globally 

stable’ (Gleick, 1998, p. 48). 

1.2 Identifying and visualising chaos  

As the years progressed, discoveries of chaotic phenomena were continuously being made 

with a surge of new investigations after Gleick popularised the theory amongst those of all 

professions (Gleick, 1998). From nature to human interactions (Pool, 1989), chaos was 

discovered within multiple subjects. 

Despite this, the existence of chaos is not easy to prove. To understand the proofs of chaos, 

the following section of this essay aims to provide insight into the various ways of identifying 

and visualising the chaos of dynamical systems, through introduction to phase space and the 

Lyapunov exponent. 

Phase Space 

Figure 1 (Gleick, 1998) 
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After discovering the chaotic phenomenon, Lorenz created a visual representation of the 

events he had observed, by constructing a three-dimensional phase portrait in phase space, 

narrowing down his twelve dimensions to three variables. By doing this, each of the variables 

could represent an axis on a three-dimensional plane, with values dependent on time. Each 

point in a phase space portrays a possible instantaneous state of the system (Lorenz, 1963) 

which usually produces one of three, principal attractors, dependent on whether the nature 

of the system being plotted is random, systematic or chaotic (Philippe, 1993).  

These shapes are called attractors due to the fact that if the system is knocked off course, it 

will return to the trajectory demonstrated in the phase portrait: a fixed point, periodic 

attractor or strange attractor.  

The simplest of the three attractors is the fixed-point attractor, 

represented by a single point, as demonstrated in Figure 2. For 

example, a marble being placed in a bowl, always coming to rest at 

its deepest point. The resting state of the bottom of the bowl would 

be the single point in phase space (Yale, n.d.).  

 

The second phase space portrait is the periodic attractor. In a 

diagram, this consists of a simple, closed shape: an ellipse, as seen 

in Figure 3. It represents periodic oscillation, in which the system 

repeats its motions indefinitely, such as in a frictionless pendulum – 

the lack of resistive forces means the pendulum swings, repeatedly 

producing the same coordinates in phase space. 

 

Finally, the strange attractor is the most obscure, yet the most 

important portrait when regarding chaos. These attractors are 

neither static nor periodic, instead forming a continuous trajectory 

which never crosses over the same path twice (Robertson & 

Combs, 2014). Strange attractors seemingly create a paradox; they 

form an infinite path within a finite area. Its path passes arbitrarily 

close arbitrarily often to any point through which it has previously 

passed, occupying just less than the number of dimensions it was plotted in (Lorenz, 1963). 

The most famous strange attractor (the Lorenz attractor) is depicted in Figure 4, resembling 

Figure 2 (Richardson, 

Dale & Marsh, 2014) 

Figure 3 (Richardson, 

Dale & Marsh, 2014) 

Figure 4 (Richardson, 

Dale & Marsh, 2014) 
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the image of a butterfly’s wings, adding to the image of ‘the butterfly effect’. Strange 

attractors are staples of chaos and are used in identifying chaos.  

The Lyapunov Exponent 

Another important concept in determining systems as chaotic, which can help in the 

construction of phase portraits, is the Lyapunov exponent. The calculated Lyapunov 

exponent of a system tells the investigator the nature of system in terms of the three types of 

attractor, by quantifying the sensitivity of initial conditions of a system and measuring the rate 

convergence or divergence of trajectories starting from nearby initial points (Sandri, 1996). 

If the Lyapunov exponents calculated are always negative, then the system belongs on a 

fixed-point attractor, as the perturbation will always die down to zero. When the exponent is 

always negative or zero, the system should be represented by a periodic attractor. And when 

the Lyapunov exponents have negative, zero and positive values, the system can be plotted 

on a chaotic attractor (Guan, 2014). The positive value of the Lyapunov exponent shows that 

if there is a perturbation in a certain direction, it will grow exponentially. This shows a 

sensitivity to initial conditions which is, yet again, a defining characteristic of chaos. 

Using such methods to identify chaos prove useful when applying chaos theory to a range of 

subjects, such as epidemiology, which will be covered in the following section.  

Section 2 – Chaos in Epidemiology 

2.1 Chaos in infectious disease  

One of the greatest threats to human health has always been disease. In recent years, 

COVID-19 has infected conversations and flipped worlds upside down, yet knowledge and 

ability to predict such pandemics, despite advancing at an incredible rate, is still very limited.   

There are many variations of epidemics that have been investigated and analysed and each 

have their own specific dynamics. Through the lens of chaos theory, the mechanics of 

disease can be seen under a new light. Chickenpox, and other periodically occurring 

diseases, plot elliptical attractors in phase space (Philippe, 1993). Other diseases are 

endemic, meaning that they occur consistently (CDC, 2012). Yet there are also sporadic 

diseases, occurring at irregular intervals and frequencies, such as measles (Philippe, 1993). 

It is these sporadic diseases which seem to display the most chaotic dynamics. 

Like with all determination of chaotic dynamics, deciding whether a model of a disease 

shows a chaotic nature can be established through identifying certain characteristics: 
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aperiodicity, sensitivity to initial conditions, long term unpredictability, and determinism 

(Borah et al., 2022). In terms of disease, these would be translated respectively as follows: a 

lack of repeating patterns in the dynamics being investigated; a rapid divergence in 

trajectories with slight changes in initial conditions; propagation of the disease being 

fundamentally unexpected; the outcome, rate and spread of disease being defined by real 

changes in physical conditions. 

Mathematical models can be a great aid in spotting these attributes, with the most popular 

being the Susceptible–Infectious–Recovered (SIR) model, first used by Kermack and 

McKendrick in 1927 (Momani et al., 2021). In general, these models have prominent use in 

epidemiology, helping to understand the growth and spread of infectious disease as well as 

assisting vaccination regimen (Sinha, 1997). However, when discoveries of chaos arise, it 

can become much more complex, either diminishing hopes of prediction or spurring on 

investigations to use chaos to our advantage. 

2.2 Chaos in measles 

One notable disease in which chaotic dynamics has been explored multiple times is measles. 

Due to the extensive data collected over the past 200 years for major cities such as New 

York, it has been considered to be one of the best contenders for the detection of chaotic 

fluctuations (Grenfell, 1992).  

Evidence for chaotic dynamics in measles epidemics has been found throughout the US and 

UK, in a study based on observations of 80 major cities in the ‘prevaccination’ era of these 

countries. The dynamics of measles in the US were reported to result in chaotic patterns, 

due to exhibitions of unprompted shifts in periodicity, displaying the potential of the disease 

as a case study for chaos theory (Dalziel et al., 2016). Determining this hypothesised chaos 

in the data available was achieved through detecting and testing sensitivity to initial 

conditions through use of models like SIR models as well as calculating the Lyapunov 

Exponent for the major cities. 

Creating the deterministic SIR models provided evidence needed for sensitivity to initial 

conditions, which arose mostly due to the seasonal fluctuations in transmission – changing 

around school terms, or due to migration of workers, for example. These slight changes in 

transmission of the disease led to significant variation in the complexity of measles dynamics, 

resulting in characteristically chaotic patterns. Interestingly, the US is reported to have a 

higher and more variable level of chaotic dynamics than the UK, with its sensitivity to initial 
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conditions being greater than in UK cities, reducing the model’s ability to be applied to 

measles epidemics elsewhere. 

Further evidence for chaos came from the calculations of the Lyapunov Exponent, in which 

most US cities had a positive result, confirming the diverging of trajectories with arbitrarily 

close initial conditions. 

Based on these investigations, measles is a clear example of the existence of chaos in the 

spread of infectious disease. Due to this, small perturbations in transmission rate can lead to 

rapid erosion of the capacity to forecast epidemic patterns, explaining the difficulty in 

predicting the outcomes of a disease and possibly reducing the efficacy of control measures 

such as vaccination (Dalziel et al., 2016, Olsen & Schaffer, 1990). 

2.3 Chaos in COVID-19 

Since explorations into the dynamics of measles epidemics, the question of the extent to 

which chaos theory can be applied to other communicable diseases has arisen. New 

knowledge regarding the origin and spread of the Bombay Plague Epidemic (in discovering 

multiple epizootics of rat were responsible instead of a single species of rat and flea), led to a 

new model, finding the progression of the disease to be chaotic (Mangiarotti, 2015). Other 

instances of diseases having undergone similar scrutiny and results include the Ebola virus 

(Borah et al., 2022), smallpox outbreaks, and most recently COVID-19. 

Efforts to understand the COVID-19 pandemic have been never-ending in attempts to 

drastically reduce its impact. In order to do this, a multitude of chaotic mathematical models 

have been produced, hoping for an explanation as to why this pandemic has had such a 

colossal effect on the world. In this section, the evidence for COVID-19 being a chaotic 

pandemic will be laid out and discussed, before suggesting the implications that this may 

have on our understanding of the disease. 

Searching for chaos in epidemiology means searching for its key characteristics. In the 

context of COVID-19, this has been approached in several different ways during the time in 

which the disease has impacted the world, using global and local data.  

An example of a global investigation is the work published by Jones and Strigul in October 

2020. The daily cases per country, data collected by Johns Hopkins University over the 

course of the pandemic, was used in this study. From this, Jones and Strigul designed a 

dynamic analysis tool to process and examine the data, comparing the courses plotted 

across countries and territories in search for chaotic features. 
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Unlike the SIR model, those recovering from COVID-19 were not taken into account, instead 

purely investigating the cumulative cases by date, still allowing sufficient analysis of infection 

rate. At first, the number of cases for each country was plotted - days since first recorded 

infection against the percentage of population infected. This is where the data of infected 

percentage of countries’ populations showed wildly different trajectories, despite starting off 

with similar progressions. As seen in Figure 5 and 6, it would be impossible to predict the 

exact course of infection for a single country based on results of previous days, as there are 

clearly multiple trajectories which it could follow.  

 

 

Figure 6 (Jones & Strigul, 2020) 

These results not only display unpredictability in the data, but also sensitivity to initial 

conditions. To further support this observation, a plot of the rate of infection (first derivative) 

followed by plots of rate of change in spread (second derivative) were carried out. By 

measuring the second derivative, a quantitative analysis of the sensitivity observed was 

available, solidifying evidence suggesting sensitivity to initial conditions. This can be visually 

Figure 5 (Jones & Strigul, 2020) 
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seen in Figure 7, an example of Italy’s second derivative, which resembles the distinct time 

series of a classic chaotic system.  

 

Figure 7 (Jones & Strigul, 2020) 

However, comparison of the countries and territories of the world was not where the analysis 

of COVID-19 ended. In separate studies, the dynamics of the disease in Japan and the US – 

Sapkota et al. (2022 and 2021 respectively) - were investigated, mainly using a modern 

technique for detecting chaos, called the 0-1 test. This test has no need for construction of 

phase space yet still has the capability to distinguish between periodic and chaotic 

dynamics, with a result nearing one strongly suggesting the presence of chaos (Gottwald, 

2016). In both of these studies, the dynamics of COVID-19 varied on a local scale, 

dependent on the prefecture in Japan and the state in the US. On this scale of analysis, 

76.6% of Japanese prefectures and 35% of US states showed chaotic behaviour, showing 

that although not every instance returned with a positive result, chaotic dynamics still exist in 

the disease. Lyapunov exponents were also calculated to be positive, further supporting this.  

Despite COVID-19 not meeting the requirements for chaotic dynamics for all scopes of 

study, the majority of conclusions (including additional analysis of phase portraits) have led 

to the disease being considered chaotic on the whole (Borah et al., 2022). Like measles, this 

discovery has several implications on approaches to combat infection rate, with the major 

influence being sensitivity to initial conditions. 

Attempts to utilise knowledge of chaos in predictions of the disease have already been made 

using data regarding the emerging epidemic in China, Japan, South Korea and Italy, and 

applying it to predict the disease’s course in sixteen other countries (Mangiarotti, 2020). 

Although in some cases the closest scenarios identified initially provided some resemblance 
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across countries, in most situations, the differences accumulated, causing trajectories to 

diverge drastically and predictions to deteriorate, due to differences in control measures and 

the population’s response from country to country.  

Despite the sensitivity to initial conditions rendering predictions of COVID-19 courses 

practically useless, chaotic models have had other uses. In the case described above, it was 

concluded that the chaotic global modelling approach to COVID-19 could have been (and 

still can be) useful for decision makers in analysing the efficiency and efficacy of control 

measures, advising those in countries in which disease levels were still low on approaches to 

tackling infections. 

This is supported by Sapkota et al. (2021) in writing that an improved understanding of the 

underlying dynamics of COVID-19 and effects on infection rate could be used to enhance the 

effectiveness of public health interventions, providing reassurance that chaos can be used to 

benefit human health. 

Section 3 – Fractal Geometry in the Human Physiological System 

Chaos is not only found in the patterns of the population of disease, but intrinsically in each 

individual, through the behaviour and structure of physiological systems of human bodies, 

mostly in the form of fractals. The works of chaos can be found in the structure of the 

circulatory system and the way a heart beats, right down to the composition of DNA (Kenkel 

& Walker, 1996). It is in this way that chaos makes up an essential part in the way the human 

body functions, impacting physical health in a way that nobody had thought of before 

Lorenz’s fateful discovery.  

After an introduction to fractal geometry, the following section of this essay will explore the 

applications of fractals in the human physiological system and what this may mean for the 

future of medicine. Through this, the surprising truth in the statement ‘chaos is health’ will be 

delved into. 

3.1 Fractal Geometry 

In 1975, Polish-born mathematician Benoit Mandelbrot introduced the term ‘fractal’ to 

mathematical understanding, transforming outlooks on Euclidean geometry (Gleick, 1998). 

Instead of concerning himself with traditional one-, two- and three-dimensional shapes, 

Mandelbrot created a branch of mathematics which looked at shapes with non-integer, 

fractional dimensions. 
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Due to its complexity, fractal geometry was not formally defined until several years after 

Mandelbrot’s discovery. Therefore, it has been found that the best way to understand this 

concept is not through its calculations or complex shapes, but through the context and 

application of nature. In his 1982 book, ‘The Fractal Geometry of Nature’, Mandelbrot 

famously observed, “Clouds are not spheres, mountains are not cones, coastlines are not 

circles, and bark is not smooth, nor does lightning travel in a straight line” and contemplating 

this clearly shows how insufficient the world of Euclidean shapes is in the practical universe.  

The coastline of Britain can be used to comprehend the basics of fractal geometry. From 

afar, the shape of Britain could be described as somewhat rectangular, however, this 

becomes further from the truth as the image is magnified. Rough edges of the coastline 

become harder to outline with Euclidean shapes, and complexity continues to increase upon 

further magnification. Wildly different results are produced if the path of a boat around the 

coastline is measured in comparison to the pathway of an ant around the same coastline, 

around rocky surfaces, yet they would both be valid outcomes.  

With this aid of the coastline, the main characteristic of fractals becomes clearer: their ability 

to undergo infinite magnification and still behold intricate, self-similar patterns (The Colours 

of Infinity, 1995).  

Computer generated fractals more accurately abide by defining attributes, with simple 

formulae producing self-similar patterns with infinite resolution, much like how complex 

deterministic systems can be described by just a couple of variables and differential 

equations.  

Examples of such fractals include the Koch snowflake, which were discovered before 

Mandelbrot’s findings (Stewart, 2009). The Koch snowflake arises from simple iterations, 

beginning with an equilateral triangle and replacing the middle third of each side with a 

‘wedge’, creating a star-like shape the process of which can be seen in Figure 8 (Crawford, 

2020). Through the repetition of these steps, the complex Koch snowflake forms (Figure 9). 

 

Figure 8 (Cruzan, 2019) 
Figure 9 (Berg, 2023) 
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Unlike in Euclidean geometry, the Koch snowflake, and other fractals such as the Sierpiński 

triangle are far from limited to integer dimensions. Instead, the dimensions of fractals can be 

calculated to be fractional – non-integer numbers which describe how the shape takes up 

space. Both Britain’s coastline and the Koch snowflake have dimensions between one and 

two, being approximately 1.25 (Mandelbrot, 1967) and 1.26 (Vanderbilt, n.d.) respectively. 

The calculation of such dimensions can lead to quantifying the complexity of fractals in terms 

of how densely it takes up the space it’s plotted in. A higher dimension leads to a higher 

element of ‘roughness’ and therefore a higher complexity (Husain et al., 2021). 

Fractals appear at many points in chaos theory, often being described as ‘remnants’, or 

visual identities of chaos due to fractals resulting from chaotic processes (Goldberger et al., 

1990). The strange attractor – the symbol of chaos theory – has also been discovered to 

exist in a fractional dimension, being an infinite pathway in a finite space. In this way, two 

great discoveries of the twentieth century become linked, uniting to inspire incredible 

research, including into how human health may be impacted by them.  

3.1 - Fractals in Human Physiology 

After finding so many natural examples of fractals, it is not a surprise that similar structures 

exist in the human body as well. The distinct fractal branching found in trees and rivers 

emerges in multiple human systems, including the circulatory, respiratory and nervous 

systems (Gleick, 1998). The human body may well be the place where fractals and chaos are 

most abundant and available to study. 

The recurrence of such structures in so many places throughout the body has led to multiple 

researchers suspecting the existence of a simple internal code, repeated throughout 

development to create otherwise unrelated systems so similar (Goldberger & West, 1987). It 

has also been suggested that the processes resulting from this code are examples of 

deterministic chaos - another reason as to why the structures formed are fractal-like. In order 

for the body to have evolved to contain several instances of fractals, there must have been 

valuable reasons for it to do so, leading to investigation into the role fractals in human health. 

One of the main purposes for the repeating self-similar organisation, from bronchi into 

bronchioles and villi into microvilli, is the optimisation for substance exchange. It is well-

known that a large surface area to volume ratio is ideal for diffusion, osmosis and active 

transport improving efficiency, and a fractal structure provides this. Information processing in 

the neurons can also have this applied to it. Just like the coastline, consequent to their fractal 
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dimensions, these self-similar structures increase surface area, benefitting function of the 

human body and therefore its health. 

Furthermore, typical fractal structures provide security when faced with external damage or 

internal genetic alteration. They are robust and resistant to injury, due to their flexibility and 

adaptability in response to modification (Kenkel & Walker, 1996). This follows the same 

principle as chaotic systems, in which the trajectories of a strange attractor return to their 

stable paths, in spite of perturbations to the dynamical system. 

In addition to providing stability to the structures of human physiology, revealing the fractal 

dimension of physiological compositions through fractal analysis can be used in identifying, 

and in some cases predicting the course of diseases. The lungs give plentiful examples of 

this, the most obvious being the bronchiole branching (Lennon et al., 2015). Yet beyond this, 

the composition of the lung tissue has a fractal dimension. 

3.2 Fractal Analysis of the Lungs 

The lungs have undergone numerous examples of intense fractal analysis in order to 

investigate how dimensions vary with health. An example of this is the analysis of silicon 

casts of human airways made from the autopsy material from people of three groups: 

nonfatal asthma, fatal asthma and no asthma (Boser et al., 2005). Apart from the clear 

abnormalities in the airways of the asthma patients, fractal analysis concluded that they also 

correlated with lower fractal dimensions (1.76), in comparison to no asthma (1.83). 

As lower dimensions describe less complex structures, this confirmed the notion that higher 

levels of complexity are associated with better health. Continuing the research also led to 

comparisons of fractal dimensions between fatal (1.72) and nonfatal (1.76) cases of asthma 

in which fatal cases had a lower fractal dimension, supplying a means of possibly 

quantitatively defining severity of the disease. 

There have been several other lung diseases which have recently been viewed through 

fractal analysis, including chronic obstructive pulmonary disease (COPD) as a result of 

emphysema and airway disease. In the case of Bodduluri et al. (2018), non-invasive CT 

scans were used to remodel the airways of over 8000 participants with COPD and carry out 

fractal analysis. Like in asthma, the results displaying lower fractal dimensions were in more 

severe cases of the disease and also showed higher risks of disease progression.  

The exception to this pattern seems to be lung cancer. Cancer has great impacts on fractal 

dimensions of lung tissue but leads to a higher value dimension in comparison to healthy 
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lungs (Lennon et al., 2015). It has also been hypothesised that aggressive cancer tumours 

have higher fractal dimension than non-aggressive tumours, although this requires further 

confirmation in larger studies.  

The potential fractal analysis provided could bring notable implications to how diseases such 

as asthma, COPD and cancer are diagnosed and treated. Fractal analysis of the lungs not 

only identifies the presence of the disease but may also be used in classifying subtypes 

within it, especially in emphysema (Tanabe et al., 2020) and cancer (Itik & Banks, 2009), the 

beginnings of which have been shown in how dimension depends on asthma severity. This 

could be developed as an invaluable technique to predict the prognosis of lung disease, 

influencing approaches to treatment. 

Section 4 – Chaos and Fractal Geometry in the Heart 

Like the bronchiole tree and organisation of neurons, the structure of the circulatory system 

is one which displays typical features of fractal structures, with the blood vessels branching 

out into self-similar forms. This provides an optimal surface area for the exchange of 

nutrients and gases in and out of the bloodstream and is especially prevalent in the patterns 

of the coronary arteries surrounding the heart (Goldberger et al., 1990). Yet chaos is also 

found in the human heartbeat.  

It is obvious that between periods of rest and 

activity, heart rate changes. The heart is 

required to beat faster in response to 

exercise, to provide sufficient resources to the 

muscle cells around the body (Kumar, 2012). 

Yet during intervals of rest, most picture the 

heart rate to be periodic, mapped out as a 

regular sine wave on a time series plot. In fact, 

the resting heart rate of healthy individuals is 

instead slightly irregular – chaotic, even (Firth, 

1991). 
Figure 10 (Goldberger & West, 1987) 
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Carrying out time series analysis of beat-to-beat heart rate fluctuations in healthy subjects 

revealed a highly erratic graph, with self-similar 

fluctuations over multiple time scales (Figure 10) 

(Goldberger & West, 1987). On first glance, this 

seems to express the idea that heartbeats vary 

randomly, yet the scaling in the time series graph 

gives the first hints of fractal qualities, therefore 

suggesting the presence of chaos. To confirm this, 

a phase space representation can be formed the 

result of which is a trajectory in phase space 

resembling a strange attractor (Figure 11) – a 

pathway which never repeats itself. 

Since the discovery that a young, healthy heartbeat is a chaotic system, numerous 

academics have researched into what this may mean for the approach to heart health and 

disease. One of the main subsequent findings was the variation in the levels of chaos present 

dependent on age and in the lead up to cardiac 

arrest. Just like in the fractal structures in other areas 

of the physiological system, the heart conforms to 

the fact that complexity suggests health; heartbeats 

lose variability and become more regular with age 

and disease (Wu et al., 2009). 

Analysis of the workings of the heart in this way, 

could have major implications on detecting cardiac 

arrest. In the minutes and even months leading up 

to cardiac arrest cases, the resting heartbeat 

becomes more regular, with phase portraits starting 

to evolve from strange, to periodic, to fixed point 

attractors (Sessa et al., 2018). This can be seen in 

Figure 12 – a ‘noisy’ limit cycle attractor produced by 

a heart eight days before sudden cardiac death - and 

Figure 13 – a point attractor produced by a heart 

thirteen hours before sudden cardiac arrest.  

Being able to predict the oncoming of sudden 

cardiac arrest is the first step in prevention and 

Figure 11 (Goldberger et al., 1990) 

Figure 12 (Goldberger et al., 1990) 

Figure 13 (Goldberger et al., 1990) 
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treatment, and applying chaotic analysis in the future could identify such cases in hopes of 

counteracting it. Similar results of a loss in variability also occur when observing disorders in 

other major organs including epilepsy, Parkinson’s and manic depression in brain waves, 

and certain cases of leukaemia in the number of white blood cells (Goldberger et al., 1990). 

Regarding chaos and treatment of heart abnormalities, is experimental data carried out by 

Garfinkel et al. (1992) in which they utilised chaos and the heart’s chaotic features to 

eradicate heartbeat arrhythmias (i.e., abnormal heart rhythms). It was believed that the 

identification of chaotic phenomena in the body such as the heart could lead to the 

development of new therapeutic strategies.    

To confirm this, the study induced arrythmias in portions of rabbit heart using the chemical 

ouabain and used methods of chaos control to return the heartrate back to normal. The 

approach to chaos control used was a modified version of one developed by Ott, Gregbogi 

and Yorke (OGY) in which it was theorised it would be possible to stabilise a chaotic system 

around one of its periodic motions. Garfinkel et al. altered the OGY method, allowing 

application to systems in which the defining equations were unknown, and called it 

proportional perturbation feedback. 

In eight of the eleven instances of chaos control, proportional perturbation feedback 

successfully returned the heart to a normal rate, reducing tachycardia as well as eliminating 

arrhythmias. The success of the method was confirmed as when removing the chaos control 

system, the ouabain induced arrhythmias returned. Having an instrument which could 

continuously use the heart’s chaotic features to provide this level of chaos control could 

therefore allow heartbeats to permanently be controlled and prevent the onset or 

continuation of heart arrythmias.   

At this point in time, it is uncertain whether the methods of chaos control could be applied to 

the in vivo heart, yet the knowledge that such methods exist could be enough to ignite the 

development of the current techniques and move towards treating arrhythmias in humans. 

These could then be applied to other chaotic systems, to control electrical waves in the brain 

for example, helping to suppress epileptic attacks (Stewart, 2009). 

Conclusion 

Chaos theory and fractal geometry play a big part in defining the state of human health, 

ranging from the external patterns of infection rate of a population as a whole, to the intrinsic 

chaotic and fractal workings of the organs in each individual. Throughout this essay, the links 
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of chaos to epidemiology, specifically the disease measles and COVID-19, have been 

explored, alongside the multitude of examples of fractal geometry and chaos in human 

physiology, especially the lungs and heart. 

There are plenty of applications of these two mathematical concepts within human health, 

providing many implications. Mastering how chaos theory links to certain diseases could 

allow researchers to re-evaluate approaches to predicting the course of epidemics and 

pandemics, taking sensitivity to initial conditions and the limits they provide into 

consideration. However, not all disease dynamics conform to chaos, and so the extent to 

which it can be used to define health in this aspect is limited. Alongside this, proving the 

existence of chaos in these instances is difficult, but efforts to utilise chaos in the prediction 

and understanding of COVID-19 have been successful and therefore, searching for chaos 

should still be pursued. 

When introducing fractal geometry into chaos, applications and implications on human health 

(in terms of the individual) rise dramatically. There is a large extent in application to human 

physiology, from the microscopic scale of DNA to the macroscopic respiratory and 

circulatory systems. It seems that the influences of complex fractal geometry and chaos 

improve efficiency of these systems and contribute to good health overall. 

Making an effort to understand chaos within health could lead to newly improved approaches 

in therapeutic strategies and diagnosis of disease, as seen in the Garfinkel et al. experiment 

on the heart. This then may lead to similar advancements in other chaotic organs including 

the brain, yet again providing insight into the extent to which chaos can have applications 

and implications on human health.  

Overall, although chaos theory and fractal geometry are not applicable to every aspect of 

human health, their influence in the state of wellbeing of individuals and populations alike is 

undeniable, and they have the potential to provide new and exciting pathways in the future of 

medicine. 

Word count: 5421 
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