To what extent do chaos theory and fractal geometry have applications to and

implications on human physical health?
Abstract

Recent research into the nature of dynamical systems has led to a myriad of
results detailing the existence of chaos and fractal geometry in almost all
subjects imaginable. This essay aims to explore the applications of these two
mathematical concepts to human physical health and what implications they may
have on understanding with emphasis on epidemiology, fractal physiology and
the heart.

Introduction

The study of nonlinear dynamics, more commonly described by the term ‘chaos theory’, is a
recently popularised science which is increasingly being found to exist in all walks of life.
Since its official discovery by meteorologist Edward Lorenz in the 1960s, the field has
exploded with an incredible new scale of applications (Reeves, 2014). Paired with the
advancements in fractal geometry by Benoit Mandelbrot, which followed in the 1970s, the
question of the applications to, and implications on health has since arisen, prompting a new
string of research involving these two mathematical concepts and medicine (Horgan, 2009).
In this essay, these applications will be explored, as well as the extent of their implications,

including how chaos could shape the future of health.
Section 1 — An Introduction to Chaos Theory
1.1 The discovery of chaos theory.

Modern chaos theory was discovered in 1961, by Lorenz, whilst working on modelling
weather systems at the Massachusetts Institute of Technology (Lorenz, 1963). Lorenz was
striving to provide a model which could aid in longer-term weather prediction. As a result, he
initially produced twelve differential equations, defining twelve dimensions or natural laws to
be simulated (Gleick, 1998). Lorenz noticed that although there seemed to be near
repetitions in his model, exact replications of previous trajectories never occurred. This
corresponds with observations of the Earth’s atmosphere; although there may be similar

occurrences, no day of weather exactly matches another.



At one point, Lorenz started his simulation differently, instead using a rounded value for a
variable of 0.506 in place of the exact 0.506127. As the new simulation ran, its trajectory

began to drastically diverge from the original, despite the miniscule scope of the alteration
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Chaos has since been defined differently by many; therefore, it is often more accurate to

Figure 1 (Gleick, 1998)

consider it through its characteristics: sensitivity to initial conditions, complex dynamics, and

determinism all of which are displayed in Lorenz’s model (Kenkel & Walker 1996).

By considering these characteristics, chaos suggests that with complete knowledge of the
exact initial conditions of a system, any future state could be determined. Unfortunately,
although this may be true, the impossibility of measuring initial conditions precisely quashes
this hypothesis for practical prediction (Lorenz, 1963). This can then lead to a common
misconception — that chaotic systems are unstable. Instead, the opposite is true; no matter
how much interference and noise a dynamical system is injected with, it will return to and
remain on a chaotic trajectory, making such systems 'locally unpredictable [but] globally
stable’ (Gleick, 1998, p. 48).

1.2 Identifying and visualising chaos

As the years progressed, discoveries of chaotic phenomena were continuously being made
with a surge of new investigations after Gleick popularised the theory amongst those of all
professions (Gleick, 1998). From nature to human interactions (Pool, 1989), chaos was

discovered within multiple subjects.

Despite this, the existence of chaos is not easy to prove. To understand the proofs of chaos,
the following section of this essay aims to provide insight into the various ways of identifying
and visualising the chaos of dynamical systems, through introduction to phase space and the

Lyapunov exponent.

Phase Space



After discovering the chaotic phenomenon, Lorenz created a visual representation of the
events he had observed, by constructing a three-dimensional phase portrait in phase space,
narrowing down his twelve dimensions to three variables. By doing this, each of the variables
could represent an axis on a three-dimensional plane, with values dependent on time. Each
point in a phase space portrays a possible instantaneous state of the system (Lorenz, 1963)
which usually produces one of three, principal attractors, dependent on whether the nature

of the system being plotted is random, systematic or chaotic (Philippe, 1993).

These shapes are called attractors due to the fact that if the system is knocked off course, it
will return to the trajectory demonstrated in the phase portrait: a fixed point, periodic

attractor or strange attractor.

The simplest of the three attractors is the fixed-point attractor,
represented by a single point, as demonstrated in Figure 2. For
example, a marble being placed in a bowl, always coming to rest at
its deepest point. The resting state of the bottom of the bowl would

Fixed pointattractor be the single point in phase space (Yale, n.d.).
Figure 2 (Richardson,
Dale & Marsh, 2014)

The second phase space portrait is the periodic attractor. In a
diagram, this consists of a simple, closed shape: an ellipse, as seen
in Figure 3. It represents periodic oscillation, in which the system

repeats its motions indefinitely, such as in a frictionless pendulum —

Vi wocts ateuctis the lack of resistive forces means the pendulum swings, repeatedly

Figure 3 (Richardson,  producing the same coordinates in phase space.
Dale & Marsh, 2014)

Finally, the strange attractor is the most obscure, yet the most
important portrait when regarding chaos. These attractors are
neither static nor periodic, instead forming a continuous trajectory

which never crosses over the same path twice (Robertson &

Combs, 2014). Strange attractors seemingly create a paradox; they

Strange attractor

form an infinite path within a finite area. Its path passes arbitrarily
Figure 4 (Richardson,
Dale & Marsh, 2014) close arbitrarily often to any point through which it has previously
passed, occupying just less than the number of dimensions it was plotted in (Lorenz, 1963).

The most famous strange attractor (the Lorenz attractor) is depicted in Figure 4, resembling



the image of a butterfly’s wings, adding to the image of ‘the butterfly effect’. Strange

attractors are staples of chaos and are used in identifying chaos.
The Lyapunov Exponent

Another important concept in determining systems as chaotic, which can help in the
construction of phase portraits, is the Lyapunov exponent. The calculated Lyapunov
exponent of a system tells the investigator the nature of system in terms of the three types of
attractor, by quantifying the sensitivity of initial conditions of a system and measuring the rate

convergence or divergence of trajectories starting from nearby initial points (Sandri, 1996).

If the Lyapunov exponents calculated are always negative, then the system belongs on a
fixed-point attractor, as the perturbation will always die down to zero. When the exponent is
always negative or zero, the system should be represented by a periodic attractor. And when
the Lyapunov exponents have negative, zero and positive values, the system can be plotted
on a chaotic attractor (Guan, 2014). The positive value of the Lyapunov exponent shows that
if there is a perturbation in a certain direction, it will grow exponentially. This shows a

sensitivity to initial conditions which is, yet again, a defining characteristic of chaos.

Using such methods to identify chaos prove useful when applying chaos theory to a range of

subjects, such as epidemiology, which will be covered in the following section.
Section 2 — Chaos in Epidemiology
2.1 Chaos in infectious disease

One of the greatest threats to human health has always been disease. In recent years,
COVID-19 has infected conversations and flipped worlds upside down, yet knowledge and

ability to predict such pandemics, despite advancing at an incredible rate, is still very limited.

There are many variations of epidemics that have been investigated and analysed and each
have their own specific dynamics. Through the lens of chaos theory, the mechanics of
disease can be seen under a new light. Chickenpox, and other periodically occurring
diseases, plot elliptical attractors in phase space (Philippe, 1993). Other diseases are
endemic, meaning that they occur consistently (CDC, 2012). Yet there are also sporadic
diseases, occurring at irregular intervals and frequencies, such as measles (Philippe, 1993).

It is these sporadic diseases which seem to display the most chaotic dynamics.

Like with all determination of chaotic dynamics, deciding whether a model of a disease

shows a chaotic nature can be established through identifying certain characteristics:



aperiodicity, sensitivity to initial conditions, long term unpredictability, and determinism
(Borah et al., 2022). In terms of disease, these would be translated respectively as follows: a
lack of repeating patterns in the dynamics being investigated; a rapid divergence in
trajectories with slight changes in initial conditions; propagation of the disease being
fundamentally unexpected; the outcome, rate and spread of disease being defined by real

changes in physical conditions.

Mathematical models can be a great aid in spotting these attributes, with the most popular
being the Susceptible-Infectious—Recovered (SIR) model, first used by Kermack and
McKendrick in 1927 (Momani et al., 2021). In general, these models have prominent use in
epidemiology, helping to understand the growth and spread of infectious disease as well as
assisting vaccination regimen (Sinha, 1997). However, when discoveries of chaos arise, it
can become much more complex, either diminishing hopes of prediction or spurring on

investigations to use chaos to our advantage.
2.2 Chaos in measles

One notable disease in which chaotic dynamics has been explored multiple times is measles.
Due to the extensive data collected over the past 200 years for major cities such as New
York, it has been considered to be one of the best contenders for the detection of chaotic
fluctuations (Grenfell, 1992).

Evidence for chaotic dynamics in measles epidemics has been found throughout the US and
UK, in a study based on observations of 80 major cities in the ‘prevaccination’ era of these
countries. The dynamics of measles in the US were reported to result in chaotic patterns,
due to exhibitions of unprompted shifts in periodicity, displaying the potential of the disease
as a case study for chaos theory (Dalziel et al., 2016). Determining this hypothesised chaos
in the data available was achieved through detecting and testing sensitivity to initial
conditions through use of models like SIR models as well as calculating the Lyapunov

Exponent for the major cities.

Creating the deterministic SIR models provided evidence needed for sensitivity to initial
conditions, which arose mostly due to the seasonal fluctuations in transmission — changing
around school terms, or due to migration of workers, for example. These slight changes in
transmission of the disease led to significant variation in the complexity of measles dynamics,
resulting in characteristically chaotic patterns. Interestingly, the US is reported to have a

higher and more variable level of chaotic dynamics than the UK, with its sensitivity to initial



conditions being greater than in UK cities, reducing the model’s ability to be applied to

measles epidemics elsewhere.

Further evidence for chaos came from the calculations of the Lyapunov Exponent, in which
most US cities had a positive result, confirming the diverging of trajectories with arbitrarily

close initial conditions.

Based on these investigations, measles is a clear example of the existence of chaos in the
spread of infectious disease. Due to this, small perturbations in transmission rate can lead to
rapid erosion of the capacity to forecast epidemic patterns, explaining the difficulty in
predicting the outcomes of a disease and possibly reducing the efficacy of control measures
such as vaccination (Dalziel et al., 2016, Olsen & Schaffer, 1990).

2.3 Chaos in COVID-19

Since explorations into the dynamics of measles epidemics, the question of the extent to
which chaos theory can be applied to other communicable diseases has arisen. New
knowledge regarding the origin and spread of the Bombay Plague Epidemic (in discovering
multiple epizootics of rat were responsible instead of a single species of rat and flea), led to a
new model, finding the progression of the disease to be chaotic (Mangiarotti, 2015). Other
instances of diseases having undergone similar scrutiny and results include the Ebola virus

(Borah et al., 2022), smallpox outbreaks, and most recently COVID-19.

Efforts to understand the COVID-19 pandemic have been never-ending in attempts to
drastically reduce its impact. In order to do this, a multitude of chaotic mathematical models
have been produced, hoping for an explanation as to why this pandemic has had such a
colossal effect on the world. In this section, the evidence for COVID-19 being a chaotic
pandemic will be laid out and discussed, before suggesting the implications that this may

have on our understanding of the disease.

Searching for chaos in epidemiology means searching for its key characteristics. In the
context of COVID-19, this has been approached in several different ways during the time in

which the disease has impacted the world, using global and local data.

An example of a global investigation is the work published by Jones and Strigul in October
2020. The daily cases per country, data collected by Johns Hopkins University over the
course of the pandemic, was used in this study. From this, Jones and Strigul designed a
dynamic analysis tool to process and examine the data, comparing the courses plotted

across countries and territories in search for chaotic features.



Unlike the SIR model, those recovering from COVID-19 were not taken into account, instead
purely investigating the cumulative cases by date, still allowing sufficient analysis of infection
rate. At first, the number of cases for each country was plotted - days since first recorded
infection against the percentage of population infected. This is where the data of infected
percentage of countries’ populations showed wildly different trajectories, despite starting off
with similar progressions. As seen in Figure 5 and 6, it would be impossible to predict the
exact course of infection for a single country based on results of previous days, as there are
clearly multiple trajectories which it could follow.
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Figure 6 (Jones & Strigul, 2020)

These results not only display unpredictability in the data, but also sensitivity to initial
conditions. To further support this observation, a plot of the rate of infection (first derivative)
followed by plots of rate of change in spread (second derivative) were carried out. By
measuring the second derivative, a quantitative analysis of the sensitivity observed was

available, solidifying evidence suggesting sensitivity to initial conditions. This can be visually



seen in Figure 7, an example of Italy’s second derivative, which resembles the distinct time

series of a classic chaotic system.
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Figure 7 (Jones & Strigul, 2020)

However, comparison of the countries and territories of the world was not where the analysis
of COVID-19 ended. In separate studies, the dynamics of the disease in Japan and the US -
Sapkota et al. (2022 and 2021 respectively) - were investigated, mainly using a modern
technique for detecting chaos, called the 0-1 test. This test has no need for construction of
phase space yet still has the capability to distinguish between periodic and chaotic
dynamics, with a result nearing one strongly suggesting the presence of chaos (Gottwald,
2016). In both of these studies, the dynamics of COVID-19 varied on a local scale,
dependent on the prefecture in Japan and the state in the US. On this scale of analysis,
76.6% of Japanese prefectures and 35% of US states showed chaotic behaviour, showing
that although not every instance returned with a positive result, chaotic dynamics still exist in

the disease. Lyapunov exponents were also calculated to be positive, further supporting this.

Despite COVID-19 not meeting the requirements for chaotic dynamics for all scopes of
study, the majority of conclusions (including additional analysis of phase portraits) have led
to the disease being considered chaotic on the whole (Borah et al., 2022). Like measles, this
discovery has several implications on approaches to combat infection rate, with the major

influence being sensitivity to initial conditions.

Attempts to utilise knowledge of chaos in predictions of the disease have already been made
using data regarding the emerging epidemic in China, Japan, South Korea and ltaly, and
applying it to predict the disease’s course in sixteen other countries (Mangiarotti, 2020).

Although in some cases the closest scenarios identified initially provided some resemblance



across countries, in most situations, the differences accumulated, causing trajectories to
diverge drastically and predictions to deteriorate, due to differences in control measures and

the population’s response from country to country.

Despite the sensitivity to initial conditions rendering predictions of COVID-19 courses
practically useless, chaotic models have had other uses. In the case described above, it was
concluded that the chaotic global modelling approach to COVID-19 could have been (and
still can be) useful for decision makers in analysing the efficiency and efficacy of control
measures, advising those in countries in which disease levels were still low on approaches to

tackling infections.

This is supported by Sapkota et al. (2021) in writing that an improved understanding of the
underlying dynamics of COVID-19 and effects on infection rate could be used to enhance the
effectiveness of public health interventions, providing reassurance that chaos can be used to

benefit human health.
Section 3 - Fractal Geometry in the Human Physiological System

Chaos is not only found in the patterns of the population of disease, but intrinsically in each
individual, through the behaviour and structure of physiological systems of human bodies,
mostly in the form of fractals. The works of chaos can be found in the structure of the
circulatory system and the way a heart beats, right down to the composition of DNA (Kenkel
& Walker, 1996). It is in this way that chaos makes up an essential part in the way the human
body functions, impacting physical health in a way that nobody had thought of before

Lorenz’s fateful discovery.

After an introduction to fractal geometry, the following section of this essay will explore the
applications of fractals in the human physiological system and what this may mean for the
future of medicine. Through this, the surprising truth in the statement ‘chaos is health’ will be

delved into.
3.1 Fractal Geometry

In 1975, Polish-born mathematician Benoit Mandelbrot introduced the term ‘fractal’ to
mathematical understanding, transforming outlooks on Euclidean geometry (Gleick, 1998).
Instead of concerning himself with traditional one-, two- and three-dimensional shapes,
Mandelbrot created a branch of mathematics which looked at shapes with non-integer,

fractional dimensions.



Due to its complexity, fractal geometry was not formally defined until several years after
Mandelbrot’s discovery. Therefore, it has been found that the best way to understand this
concept is not through its calculations or complex shapes, but through the context and
application of nature. In his 1982 book, ‘The Fractal Geometry of Nature’, Mandelbrot
famously observed, “Clouds are not spheres, mountains are not cones, coastlines are not
circles, and bark is not smooth, nor does lightning travel in a straight line” and contemplating

this clearly shows how insufficient the world of Euclidean shapes is in the practical universe.

The coastline of Britain can be used to comprehend the basics of fractal geometry. From
afar, the shape of Britain could be described as somewhat rectangular, however, this
becomes further from the truth as the image is magnified. Rough edges of the coastline
become harder to outline with Euclidean shapes, and complexity continues to increase upon
further magnification. Wildly different results are produced if the path of a boat around the
coastline is measured in comparison to the pathway of an ant around the same coastline,

around rocky surfaces, yet they would both be valid outcomes.

With this aid of the coastline, the main characteristic of fractals becomes clearer: their ability
to undergo infinite magnification and still behold intricate, self-similar patterns (The Colours

of Infinity, 1995).

Computer generated fractals more accurately abide by defining attributes, with simple
formulae producing self-similar patterns with infinite resolution, much like how complex
deterministic systems can be described by just a couple of variables and differential

equations.

Examples of such fractals include the Koch snowflake, which were discovered before
Mandelbrot’s findings (Stewart, 2009). The Koch snowflake arises from simple iterations,
beginning with an equilateral triangle and replacing the middle third of each side with a
‘wedge’, creating a star-like shape the process of which can be seen in Figure 8 (Crawford,

2020). Through the repetition of these steps, the complex Koch snowflake forms (Figure 9).
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Unlike in Euclidean geometry, the Koch snowflake, and other fractals such as the Sierpinski
triangle are far from limited to integer dimensions. Instead, the dimensions of fractals can be
calculated to be fractional — non-integer numbers which describe how the shape takes up
space. Both Britain’s coastline and the Koch snowflake have dimensions between one and

two, being approximately 1.25 (Mandelbrot, 1967) and 1.26 (Vanderbilt, n.d.) respectively.

The calculation of such dimensions can lead to quantifying the complexity of fractals in terms
of how densely it takes up the space it’s plotted in. A higher dimension leads to a higher

element of ‘roughness’ and therefore a higher complexity (Husain et al., 2021).

Fractals appear at many points in chaos theory, often being described as ‘remnants’, or
visual identities of chaos due to fractals resulting from chaotic processes (Goldberger et al.,
1990). The strange attractor — the symbol of chaos theory — has also been discovered to
exist in a fractional dimension, being an infinite pathway in a finite space. In this way, two
great discoveries of the twentieth century become linked, uniting to inspire incredible

research, including into how human health may be impacted by them.
3.1 - Fractals in Human Physiology

After finding so many natural examples of fractals, it is not a surprise that similar structures
exist in the human body as well. The distinct fractal branching found in trees and rivers
emerges in multiple human systems, including the circulatory, respiratory and nervous
systems (Gleick, 1998). The human body may well be the place where fractals and chaos are

most abundant and available to study.

The recurrence of such structures in so many places throughout the body has led to multiple
researchers suspecting the existence of a simple internal code, repeated throughout
development to create otherwise unrelated systems so similar (Goldberger & West, 1987). It
has also been suggested that the processes resulting from this code are examples of
deterministic chaos - another reason as to why the structures formed are fractal-like. In order
for the body to have evolved to contain several instances of fractals, there must have been

valuable reasons for it to do so, leading to investigation into the role fractals in human health.

One of the main purposes for the repeating self-similar organisation, from bronchi into
bronchioles and villi into microvilli, is the optimisation for substance exchange. It is well-
known that a large surface area to volume ratio is ideal for diffusion, osmosis and active
transport improving efficiency, and a fractal structure provides this. Information processing in

the neurons can also have this applied to it. Just like the coastline, consequent to their fractal
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dimensions, these self-similar structures increase surface area, benefitting function of the

human body and therefore its health.

Furthermore, typical fractal structures provide security when faced with external damage or
internal genetic alteration. They are robust and resistant to injury, due to their flexibility and
adaptability in response to modification (Kenkel & Walker, 1996). This follows the same
principle as chaotic systems, in which the trajectories of a strange attractor return to their

stable paths, in spite of perturbations to the dynamical system.

In addition to providing stability to the structures of human physiology, revealing the fractal
dimension of physiological compositions through fractal analysis can be used in identifying,
and in some cases predicting the course of diseases. The lungs give plentiful examples of
this, the most obvious being the bronchiole branching (Lennon et al., 2015). Yet beyond this,

the composition of the lung tissue has a fractal dimension.
3.2 Fractal Analysis of the Lungs

The lungs have undergone numerous examples of intense fractal analysis in order to
investigate how dimensions vary with health. An example of this is the analysis of silicon
casts of human airways made from the autopsy material from people of three groups:
nonfatal asthma, fatal asthma and no asthma (Boser et al., 2005). Apart from the clear
abnormalities in the airways of the asthma patients, fractal analysis concluded that they also

correlated with lower fractal dimensions (1.76), in comparison to no asthma (1.83).

As lower dimensions describe less complex structures, this confirmed the notion that higher
levels of complexity are associated with better health. Continuing the research also led to
comparisons of fractal dimensions between fatal (1.72) and nonfatal (1.76) cases of asthma
in which fatal cases had a lower fractal dimension, supplying a means of possibly

quantitatively defining severity of the disease.

There have been several other lung diseases which have recently been viewed through
fractal analysis, including chronic obstructive pulmonary disease (COPD) as a result of
emphysema and airway disease. In the case of Bodduluri et al. (2018), non-invasive CT
scans were used to remodel the airways of over 8000 participants with COPD and carry out
fractal analysis. Like in asthma, the results displaying lower fractal dimensions were in more

severe cases of the disease and also showed higher risks of disease progression.

The exception to this pattern seems to be lung cancer. Cancer has great impacts on fractal

dimensions of lung tissue but leads to a higher value dimension in comparison to healthy
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lungs (Lennon et al., 2015). It has also been hypothesised that aggressive cancer tumours
have higher fractal dimension than non-aggressive tumours, although this requires further

confirmation in larger studies.

The potential fractal analysis provided could bring notable implications to how diseases such
as asthma, COPD and cancer are diagnosed and treated. Fractal analysis of the lungs not
only identifies the presence of the disease but may also be used in classifying subtypes
within it, especially in emphysema (Tanabe et al., 2020) and cancer (ltik & Banks, 2009), the
beginnings of which have been shown in how dimension depends on asthma severity. This
could be developed as an invaluable technique to predict the prognosis of lung disease,

influencing approaches to treatment.
Section 4 — Chaos and Fractal Geometry in the Heart

Like the bronchiole tree and organisation of neurons, the structure of the circulatory system
is one which displays typical features of fractal structures, with the blood vessels branching
out into self-similar forms. This provides an optimal surface area for the exchange of
nutrients and gases in and out of the bloodstream and is especially prevalent in the patterns
of the coronary arteries surrounding the heart (Goldberger et al., 1990). Yet chaos is also

found in the human heartbeat.

It is obvious that between periods of rest and

activity, heart rate changes. The heart is
osl required to beat faster in response to

exercise, to provide sufficient resources to the

[ 10 mia 1 muscle cells around the body (Kumar, 2012).
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Carrying out time series analysis of beat-to-beat heart rate fluctuations in healthy subjects

% revealed a highly erratic graph, with self-similar

fluctuations over multiple time scales (Figure 10)
(Goldberger & West, 1987). On first glance, this

seems to express the idea that heartbeats vary
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gives the first hints of fractal qualities, therefore
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resembling a strange attractor (Figure 11) —a

Figure 11 (Goldberger et al., 1990) pathway which never repeats itself.

Since the discovery that a young, healthy heartbeat is a chaotic system, numerous
academics have researched into what this may mean for the approach to heart health and
disease. One of the main subsequent findings was the variation in the levels of chaos present
dependent on age and in the lead up to cardiac
e arrest. Just like in the fractal structures in other areas
of the physiological system, the heart conforms to
the fact that complexity suggests health; heartbeats
lose variability and become more regular with age

and disease (Wu et al., 2009).
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treatment, and applying chaotic analysis in the future could identify such cases in hopes of
counteracting it. Similar results of a loss in variability also occur when observing disorders in
other major organs including epilepsy, Parkinson’s and manic depression in brain waves,

and certain cases of leukaemia in the number of white blood cells (Goldberger et al., 1990).

Regarding chaos and treatment of heart abnormalities, is experimental data carried out by
Garfinkel et al. (1992) in which they utilised chaos and the heart’s chaotic features to
eradicate heartbeat arrhythmias (i.e., abnormal heart rhythms). It was believed that the
identification of chaotic phenomena in the body such as the heart could lead to the

development of new therapeutic strategies.

To confirm this, the study induced arrythmias in portions of rabbit heart using the chemical
ouabain and used methods of chaos control to return the heartrate back to normal. The
approach to chaos control used was a modified version of one developed by Ott, Gregbogi
and Yorke (OGY) in which it was theorised it would be possible to stabilise a chaotic system
around one of its periodic motions. Garfinkel et al. altered the OGY method, allowing
application to systems in which the defining equations were unknown, and called it

proportional perturbation feedback.

In eight of the eleven instances of chaos control, proportional perturbation feedback
successfully returned the heart to a normal rate, reducing tachycardia as well as eliminating
arrhythmias. The success of the method was confirmed as when removing the chaos control
system, the ouabain induced arrhythmias returned. Having an instrument which could
continuously use the heart’s chaotic features to provide this level of chaos control could
therefore allow heartbeats to permanently be controlled and prevent the onset or

continuation of heart arrythmias.

At this point in time, it is uncertain whether the methods of chaos control could be applied to
the in vivo heart, yet the knowledge that such methods exist could be enough to ignite the
development of the current techniques and move towards treating arrhythmias in humans.
These could then be applied to other chaotic systems, to control electrical waves in the brain

for example, helping to suppress epileptic attacks (Stewart, 2009).
Conclusion

Chaos theory and fractal geometry play a big part in defining the state of human health,
ranging from the external patterns of infection rate of a population as a whole, to the intrinsic

chaotic and fractal workings of the organs in each individual. Throughout this essay, the links
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of chaos to epidemiology, specifically the disease measles and COVID-19, have been
explored, alongside the multitude of examples of fractal geometry and chaos in human

physiology, especially the lungs and heart.

There are plenty of applications of these two mathematical concepts within human health,
providing many implications. Mastering how chaos theory links to certain diseases could
allow researchers to re-evaluate approaches to predicting the course of epidemics and
pandemics, taking sensitivity to initial conditions and the limits they provide into
consideration. However, not all disease dynamics conform to chaos, and so the extent to
which it can be used to define health in this aspect is limited. Alongside this, proving the
existence of chaos in these instances is difficult, but efforts to utilise chaos in the prediction
and understanding of COVID-19 have been successful and therefore, searching for chaos

should still be pursued.

When introducing fractal geometry into chaos, applications and implications on human health
(in terms of the individual) rise dramatically. There is a large extent in application to human
physiology, from the microscopic scale of DNA to the macroscopic respiratory and
circulatory systems. It seems that the influences of complex fractal geometry and chaos

improve efficiency of these systems and contribute to good health overall.

Making an effort to understand chaos within health could lead to newly improved approaches
in therapeutic strategies and diagnosis of disease, as seen in the Garfinkel et al. experiment
on the heart. This then may lead to similar advancements in other chaotic organs including
the brain, yet again providing insight into the extent to which chaos can have applications

and implications on human health.

Overall, although chaos theory and fractal geometry are not applicable to every aspect of
human health, their influence in the state of wellbeing of individuals and populations alike is
undeniable, and they have the potential to provide new and exciting pathways in the future of

medicine.

Word count: 5421
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