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The mathematics behind a soap film:  

Minimal Surfaces 

 

Do you remember blowing bubbles as a child, perhaps thinking that the bubbles produced 

were spherical because the initial soap film was a circle? But if you ever had the chance to try 

blowing a cube shaped bubble, you would have quickly realised it always creates a perfect 

sphere despite the original shape of the soap film being a square or anything else. This is 

because the bubble naturally tries to minimise its surface area for a given volume of air 

trapped within the soapy film, and due to the air pressure inside and outside the bubble 

pushing against each other equally, it forms a perfect sphere.  

 

Despite the bubble forming such that it has the smallest surface area for a set volume, it is 

not actually a minimal surface. As you might notice, the bubble is in fact trying to collapse into 

a flat plane. This would form a 2-dimensional shape (called the subspace) in a 3-dimensional 

space (called the ambient configuration) and can easily be simulated by the soap film before 

you blow a bubble because the surface of the soap film is smooth and flat. Of course, in reality 

it will have some thickness, but it works for the purpose of visualisation as it shows that for a 

defined boundary, the simplest minimal surface you can have is a flat plane because it is the 

area of the least energy. This is a trivial type of minimal surface generally called a hypersurface 

where a subspace of dimensional space (n) is in an ambient configuration of a dimensional 

space (n+1), for example a 3-dimensional shape (R3) in a 4-dimensional space (R4). Therefore, 

all hypersurfaces have a codimension 1 because between Rn (the subspace) and Rn+1 (the 

ambient configuration) the difference in their dimensional space is always “(n+1) – (n)” which 

gives “1”, and is true for all hypersurfaces shown by this generalisation.  

 

Now let’s take this idea of hypersurfaces to its simplest level, a subspace R1 and an ambient 

configuration R2, in other words, a straight line on a graph connecting two defined points. 

What becomes immediately obvious? The minimal surface is the shortest distance between 

the enclosed space in this example, the two points. Similarly, for all set boundaries, the 

minimal surface has the least surface area locally and has a mean curvature of zero. This 

means that a minimal surface of R3 would satisfy Lagrange’s equation which, a partial 

differential equation (PDE), for which all solutions are minimal surfaces. The equation for 

objects in a 3-dimensional space is as follows:  

(Figure 1) Source: Wolfram MathWorld 
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(Figure 2) Source: Wikimedia Commons                                                        
a) Catenoid                                                   
b) Helicoid 

This daunting equation shows that “H = 0” (the mean curvature of an object of R3 known as 

the Guassian curvature) for which the minimal surface is parameterised. The idea that the 

mean curvature (H) will be zero is true if the shape is a minimal surface. 

  

We can take a simpler example and prove that a straight line of R1 connecting two points in 

an ambient configuration of R2 is a minimal surface by using the idea that the mean curvature 

is zero. This can be done by taking the general equation for a straight line and finding the 

second derivative, which shows the rate of change of the gradient or curvature, like so: 

𝑦 = 𝑚𝑥 + 𝑐 

𝑑𝑦

𝑑𝑥
= 𝑚 

𝑑2𝑦

𝑑𝑥2
= 0 

 

If the equation contained an exponent of “𝑥” other than ‘1’ or ‘0’ (e.g. a cubic), we would 

clearly be left with a multiple of “𝑚” and not ‘0’ after finding the second derivative. Therefore, 

the most efficient way to connect two points on a plane of R2 – giving a minimal surface – is 

with a straight line of R1. This exact same idea can be applied to any other shape in higher 

dimensions and can therefore be used to show something is a minimal surface. 

 

At this point, I hope you are curiously wondering what other minimal surfaces are there 

besides a hypersurface? Well, after much research, two more minimal surfaces were found 

during the 18th century, the catenoid in 1744 and the helicoid in 1776 – discovered by Euler 

and Meusnier respectively. These two shapes are what is known as complete minimal 

surfaces because they repeat and carry on endlessly. (The same is true for a plane however 

there are other types of minimal surfaces which aren’t continuous and will be looked at later). 
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(Figure 5) Source: Wikimedia Commons 

The catenoid is defined by (where “ a > 0 ”): 

 

 

 

 

The helicoid is defined by: 

  

 

 

Feel free to test either of these for fun on a 3D graphing calculator to see the shapes for 

yourself! As you can tell, research into minimal surfaces has been ongoing for several years 

and is still being studied to this day with Karen Uhlenbeck winning the Abel prize for her 

research in geometric analysis, including minimal surfaces, in 2019. Not only do minimal 

surfaces look visually pleasing, they are also often used in architectural designs to create 

tensile roofing. This is done such that the membrane held in place by steel cables – which 

make up the frame – are minimal surface therefore reducing the amount of material used and 

creating artistic designs at the same time. 

 

Interestingly, we find that soap film can be used to create minimal surfaces such as the 

helicoid and catenoid. Say we were to create a frame out of wire in the desired shape of the 

defined boundary and dipped it in soapy water, the shape that the bubble film makes would 

automatically form the minimal surface of that defined loop. This remains true given that the 

soap film is touching all the wire and that the wire reflects any local maximums or minimums 

within the defined boundary. It is amazing how nature seems to solve what are complex 

mathematical problems perfectly for us in this way, just by using soap film. Whilst we need 

the actual mathematics of the shapes produced to model and replicate these minimal 

surfaces, it is still enjoyable to be able to visualise them. The reason for soap film behaving in 

this way is down to the soap film immediately trying to create a shape within the set boundary 

that has the least energy relative to the boundary and therefore has a mean curvature of zero 

causing the soap film to reduce its surface area and form a minimal surface. For instance, we 

can use this idea to investigate what the minimal surface for a cube frame is and we get: 

 

  

 

 

(Figure 3) 

(Figure 4) 

(Figures 3&4) Source: 
The University of Oxford 
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Town A 
Town B 

Town D Town C 

(Figure 6)  

Note that this minimal surface made by the set boundary of a cube frame is not a complete 

minimal surface which is because this shape does not carry on infinitely, unlike the helicoid 

and catenoid. Similarly, it is possible to find out the minimum length of road required to 

connect four towns (vertices of a rectangle) on a plane R2, we can use minimal surfaces to 

solve this problem using soap film. Carrying this out, we get something like this (as shown by 

the red lines): 

 

 

 

 

 

 

 

 

 

Now for the question that’s been looming in our minds, is there an infinite number of minimal 

surfaces? Douglas and Rado were working on this problem and managed proved that there 

was a solution to the general case in 1931 and 1933 respectively. But their research did not 

discount the possibility of singularities which meant that there could still be points where 

their analysis becomes undefined and therefore collapses. However, in 1970, Osserman 

showed that a minimising solution for a restricted boundary could not have any singularities 

and so, there will always be a solution. This proved that all minimizing solutions will not break 

down at any point and thus, there is an infinite number of minimal surfaces as there is always 

a minimal surface for a set boundary.  

 

The topic of minimal surfaces becomes even more complex and interesting as you dive 

deeper, from looking at the mathematics behind bubbles to black holes and much more. Next 

time you come across bubbles, I hope you take the time to try creating different minimal 

surfaces to really admire these magnificent shapes and see nature in action, first hand. 
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