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“From [Grothendieck], I have also learned not to take glory in the
difficulty of a proof: difficulty means we have not understood. The
idea is to be able to paint a landscape in which the proof is obvious.”

- Pierre Deligne

1 Introduction

The definition of an imaginary number is most commonly one of two things:
1=v-1
it = -1

And just looking at this, surely one must ask “Why?”, what’s the benefit of
this seemingly paradoxical definition; we’ve all been told since primary school
a number multiplied by itself is positive. So how can we define something like
this and why is it useful?

I would like to answer both these questions, despite the extravagant (and
rather vague) name, I don’t think complex numbers should be treated as some
new and frightening field of maths, but rather a beautiful addition and a
powerful tool to use.

2 Laying the groundwork

When we run into a new problem, or find ourselves in new mathematical cir-
cumstances, one of the first steps we should take is, surprisingly, backwards.

For example, instead of trying to tackle the new problem, think about any
simpler examples you may already have seen. Have you seen a problem or ideas
similar to this before? Could you solve a simplified version?

By looking at a simpler case, we can analyse the key ideas and methods we
can use to solve the more complex problem in front of us.

For instance, if you had to plan a revision schedule for your final exami-
nations, you might look back at how you revised for individual examinations.
What were the key themes and ideas you focused on? Has anything changed
since then? Did your system work well?



2.1 Rediscovering Negative numbers

In this case we may look at how negative numbers were introduced to the
mathematical world. For such a common thing, which now seems inseparable
from modern mathematics and everyday life, they are actually quite abstract.

I start the year with an unknown count of seeds, and by the end of
the year, I have harvested 4 times the number of seeds as I planted
(assuming I plant all of my seeds), and in December, a friend also
donates me 20 seeds. If I now have 4 seeds, how many did I start
with?
If we let the seed count be x, we can formulate the equation: 4z + 20 = 4, and
rearrange to get 4o = —16, and therefore x = —4. But this doesn’t make sense,
as I cannot start the year with a negative number of seeds.
Indeed, this is what led the 3rd Century Greek Mathematician Diophantus
to declare the equation 4z + 20 = 4 as absurd.
So if negative numbers are so abstract, how do we think about them?
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Figure 1: Our beloved Number Line

The answer is that we would use a number line, but how does that let us
separate the negatives and the positives? What makes -5 different from +57
They both lie the same distance from 0; it is their different direction which
distinguishes them.
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Figure 2: Adding on our distances

What we can see is that every number has a certain value, and a measure
of its direction from our origin of zero.

Although the distance d1 = d2, +5 and —5 are not the same due to
their different direction relative to our origin.



2.2 Generalising

We have now introduced a new idea to our regular number system, direction,
two numbers can have the same distance from the origin, but in a different
direction, giving you two distinct numbers.

Now, we should look at how we can generalise and formalise our discovery.
What does direction mean? Can we assign it a value? What can we do by
changing a number’s direction? How else can we use this?

One way of measuring direction, is by treating it as an angle.

Figure 3: Direction as an angle

As we can see the “angle” for the positive number is either 0° or 360°', and
negative numbers are 180°, notation wise, this will be denoted (by convention)
to be the argument, denoted by arg(x), where z is our number.

When “dealing with distance from the origin” we calculate it with the modu-
lus or absolute function |x|, which is just a more compact way of referring to the
distance of = from the origin, we will be denoting this value as the magnitude
of our number.

1We denote positive numbers as having an angle of 0° or 360°, as you can get to positive
numbers in two ways, rotating by 0 degrees, in effect staying in the positive numbers, or by
making a full rotation of 360 degrees to move round our whole number line. Rotations beyond
360° just loop back to 0°



3 What do we do next?

Some examples of our new operations are shown below:

Modulus:
|-5|=5
2| =2
Argument:
arg(—4) = 180°
arg(4) = 0° or 360°
Now we have some more concrete ideas we have come up with, we can start
playing around with them. Is there a pattern we can see? What happens to
the magnitude of a number when you multiply two of them? What about the
angle?
I’'d encourage you to explore this further, try multiplying a few numbers
together and seeing what happens.

A simple thing we may notice, is that magnitude remains independent from
argument; if two numbers multiply together to give a number with a magnitude
of 10, changing either of the number’s argument (making them negative or
positive) will have no effect.

|—5 x 5| = |5 x 5| = 25

A similar, (though maybe less obvious) pattern is that the same holds for the
argument; the product of two numbers will have the same argument no matter
what magnitude you pick for the initial numbers.

arg(b x —=5) = arg(7 x —8) = 180°

3.1 New arithmetic

From exploring along with pattern spotting, you may notice that the magnitude
of the product (multiple) of two numbers, is the same as the two magnitudes of
the individual numbers multiplied together. Stated mathematically this is:

la x b| = |a| x |b|

The = just means that this is always true, no matter what values of a and
b you choose.



This property is known as distributivity, and is also shown by multiplication,
as shown here, with the mathematical and geometric interpretation side by side:
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Figure 4: How distributivity works for multiplication

Looking at the argument function under a similar lens, we can note that
the multiplication rule does not hold, —1 x 1 = —1, whereas multiplying the
arguments will give us an angle of 0° or 360°. The 360° comes from the fact
that a positive number has an angle of 0° or 360°, due to being a full rotation
round our circle, or no rotation at all.

Instead, we may see that the arguments aren’t being multiplied, but have a

different combination, see if you can spot the pattern! We will be denoting the
unknown operator as .

1x1=1
0°00°=0°
I1x-1=-1

0° ¢ 180° = 180°

—-1x-1=1
180° ¢ 180° = 360° or 0°

Though it may not be immediately obvious, our mystery symbol, ¢, for
multiplication is just addition! When we multiply two numbers, we just rotate
the first number by the argument of the second number. This is why two
negatives give us a positive, the two half rotations return our angle to zero
(180° + 180° = 360°), and this puts us among the positive numbers.



4 Squaring and Square rooting

The next section brings us to the penultimate step before we can introduce the
imaginary number in all its glory, and I do encourage you to make sure you
fully understand all the previous steps; you need a strong understanding of the
functions and properties we have learnt for this final jump.

I will be focusing on how the argument changes here, as it is ultimately more
interesting than the magnitude for the purpose of introducing complex numbers.

4.1 Squaring

So, here we are, we now have our idea of angle and magnitude, and how changing
them affects our original number. Now we have formulated and experimented
with the simple cases we should move to consider more complicated cases.

1) Do our rules hold for squaring? 2) Square rooting? 3) What patterns are
there is these results? I hope to show in this section how these three questions
are very interconnected.

If we let n be a random positive or negative number, what will the
argument (angle) of n? be?

To put this in a familiar context, we can write this out as n x n, which allows
us to apply our previous knowledge, that multiplying two numbers, changes their
arguments by adding them together and therefore simply doubles the angle.

If n is negative, we have two negatives 180 + 180 = 360, therefore
arg(n®) = 360° or 0°. And for positive n the angle is either 0,
therefore the new argument is 0 +0 = 0 or 2 x 0 = 0, or 360°,
therefore giving an angle of 360 + 360 = 720 or 2 x 360 = 720.

Make sure you remember any angle above 360°, like 720°, is just going to
be multiple full rotations, so we can, and often do, interchange it for 0° or 360°.
Visually, if you pick something up, and rotate it through a full 720°, (two full
rotations), it will return to its original orientation.

4.2 Square rooting

Square rooting a number is effectively the inverse of squaring. If we square
root a number, we expect to get a number that, when squared, returns us our
original number.

Defining our arguments for square rooting may seem complicated at first,
after all, the square root of a positive number is multiple things, both 2 and -2
go to 4 when squared, so how will we address this when square rooting?

Both —2 and 2 equal 4 when squared.
(-2)2=2%2=4
This implies both 2 and -2 are the square roots of 4:

Vi =42



The first thing to notice is that we will need to inverse whatever changes we
have made when we squared our original number.
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Figure 5: Square roots of positive numbers

To reverse our change of doubling the argument, all we do to the angle is
half it! If we replace the question mark with: %x or —+2, we can see that to
get from 360° to 180° we have divided by 2.

But then where does our £ symbol come from?

The answer to this question lies in how we treat a full rotation (or zero
rotation) as being both 0° and 360°.

Because our angle of 360° is both 360°, and 0°, when we divide by 2, we do
not have enough information to choose one value. Therefore, we use the + sign
to show that we cannot say for sure which value it was. We can state our new
rules for the argument mathematically as:

Arg(n?®) =2 x Arg(n)

Arg(v/m) = 5 x Arg(n)

And now, we are finally ready for the last step.



5 The final leap

5.1 Magnitude and Angle Form

We now have before us all the tools to make the final step and introduce the
complex number. By defining the square root in terms of its effect on the
magnitude and the argument, we have expanded its input.
By our usual definition of the square root we cannot give an answer
to this equation:
r=+-1

This is because we are restricted to arguments or angles of 0° or 180°,
and we cannot find a number to satisfy both of these constraints at
the same time.

However, we have expanded our definition of the square root, and we can work
out the expected magnitude and argument we would get:

|Vl = /In]
arg(v/n) =

And if we plug our equation x = /—1 we can get values for the modulus
and argument. Try it yourself!

x arg(n)

N

z=+v-1
ol = VIl
7| = V1
|z =1

arg(x) = % x arg(—1)

1 o o
arg(x) = 3 X 180° =90
Therefore, as our final result we get:
z[ =1
arg(x) = 90°

Although it may seem strange to get an angle that isn’t 0° or 180°, there is
nothing mathematically wrong with this answer. What the means is that it
satisfies our equations, and is consistent with our old rules. If we were to go
in the reverse, i.e. doubling the argument and squaring the modulus, we would
get back to -1; we haven’t broken any rules of mathematics.

I would recommend experimenting with this a little bit. Try testing out
what multiplying our new number by a positive does, or a negative. See what
happens when you multiply by /—1 after multiplying our new number by some
other values.



5.2 Cleaning this all up

Although this is all mathematically sound, it has started to become a bit cum-
bersome. You can see why we just use a negative sign to represent negatives
rather than listing out their angle and magnitude, or learning the argument
rules, etc. For most purposes this is fine, it is faster and more convenient to
work with. What we want to do now is apply those same time saving methods
to what we have developed here.

So therefore, how can we make our system more convenient for a
wider range of angles?

For this, we return to our old friend the number line again. Though imperfect
at the moment, we can improve upon it.
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Figure 6: New and improved Number line?

Although looking like some strange mutation of the Number Line at first,
the position of v/—1 makes sense. Angles of zero are to the right of the origin,
angles of 180° are to the left of the origin. This leads on naturally, to angles
of 90° being directly above the origin. Shortly, we will look at how we can use
this to create a grid structure to express any number more complex than just a
positive or a negative.

Notes on notation:

From now on I will be denoting any number with an angle that is
not either 0° or 180°, as being a complex number, or in notation, as
n € C, where C is the set, or collection of all complex numbers, and
€ just means n is in C



So, we know that an argument of 90, (and a magnitude of 1) will give us a
value of /—1, but what about 457 2707 1347 Well if we look at the diagram
below;

Figure 7: Newer and more improved number line?

We may notice that A could be described not by an angle and a distance,
but instead by its horizontal and vertical distance from the origin. The hori-
zontal distance refers to what we call the Real section, and can be denoted as a
coordinate x, where x € R, which just means z is a number that is on our old
and boring number line and can only have positive or negative values.

For the sake of faster notation, and distinguishing complex numbers
from real numbers, mathematicians avoid using v/—1. They manage
this by substituting in the arbitrarily chosen letter i. Instead of
writing v/—1 we can instead write i, thus we define i as:

i=+v—1

What previously seemed like some arbitrary choice, has now been
simplified away; merely a nice trick to speed up writing.

We can do the same with the vertical value, we will call it y, and this tells
us how high up it is, or what the /=1 is scaled by (We can see that 2¢/—1 is
higher up than /=1, 2i > i). Here, y refers to the scaling factor, so it is also a
real number (y € R).
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We can see some examples of this notation below (as usual try and predict
and guess along). In calculation we often switch between the angle-magnitude
form and the z and y method; both have their advantages and disadvantages.

V-1 = z2=0,y=1

2y/-1 = z=0,y=2

arg(z) =45,z =vV2 = r=1,y =1
i = rz=0,y=1

1l = 2z=1y=0

With our new co-ordinate system, we can write any complex number z (so:
z € C), as being made up of those two coordinates, effectively:

z=x+ 1y
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Figure 8: Our new Coordinate system (Named an Argand Diagram)

And thus, we can now state any complex number we want.
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6 Conclusions

I hope my essay has not just taught you about a new (or your first!) way of look-
ing at complex numbers, but also a wonderful (and in my view) beautiful way
of looking at new problems, via a rigorous series of simplifying, identifying key
patterns and generalising. I believe many seemingly unobtainable problems can
be addressed, using methods like this, and not only in maths! Providing moti-
vation and problem solving with new topics ourselves can be a great experience,
and it truly is a shame we often don’t have time for this in education.

If you want to look more into the wonderful results we can get from using the
complex plane, I would recommend looking at some functions or operations we
already know, and trying to introduce complex inputs. There are so many more
beautiful aspects of the complex world I wish I had time to at least mention.

But now that baton lies in your hands; so go run with it!
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