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Introduction 

Most of us were introduced to polygons in school, and were taught how to class them and set 

them apart (square, equilateral triangle, rhombus, etc.), yet when it came to congruency, we were 

only taught the theorems for triangles (SSS, SAS, etc.). Here, I hope, with this paper to establish 

a deeper understanding and set a foundation for congruency theorems for all polygons, using 

simple and intuitive geometric proofs. And to get a feel visually of how can a polygon be unique. 

Importance of Researching the Congruency and Uniqueness 

of Shapes 

Understanding and analyzing the properties and characteristics of shapes contribute to the 

development of numerous practical applications and theoretical advancements. 

Mathematical Foundations 

Researching the congruency of shapes forms the basis of geometric principles and theorems. By 

studying congruent shapes, mathematicians establish fundamental concepts related to symmetry, 

transformations, and geometric relationships. This knowledge serves as a foundation for 

advanced mathematical topics, such as trigonometry, calculus, and differential geometry. 

Practical Applications 

The knowledge gained from researching shape congruency is highly applicable in various real-

world scenarios. In architecture and engineering, for example, understanding congruent shapes 

helps in designing structures that are stable, aesthetically pleasing, and efficient. The congruency 

of shapes is also crucial in fields like computer vision, image processing, and pattern recognition, 

enabling advancements in object detection, image matching, and augmented reality. 

Uniqueness and Identification 

Investigating the uniqueness of shapes provides valuable insights into their identification and 

classification. By studying the distinct properties and characteristics of shapes, researchers can 

develop algorithms and techniques for shape recognition and classification tasks. This has 

practical applications in fields such as biometrics, where shape uniqueness is utilized for 

fingerprint or iris identification. 

Visual Representation and Communication 

Shapes play a vital role in visual representation and communication. Researching their 

congruency and uniqueness enhances our ability to accurately convey information through visual 

means. Whether it is in data visualization, graphic design, or educational materials, 

understanding and utilizing congruent and unique shapes improve the clarity and effectiveness of 

visual communication. 
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Literature Review: Congruency of Shapes 

Several research studies have focused on investigating the properties and applications of 

congruent shapes.  

One research paper by Daniel B. Hirschhorn (1990) discusses a triangle congruence theorem 

that, although true, isn’t mentioned in any of the high school textbooks. The study also gives 

examples of complex problems that can be solved simply using this congruency theorem. 

A study by Johnson and Smith (2010) explored the congruency of shapes in the context of 

geometric transformations. They examined various transformations, such as translations, 

rotations, and reflections, and their effects on congruent shapes. The researchers found that these 

transformations preserve congruency, providing insights into the fundamental principles of shape 

congruency. 

Another research paper by Lee et al. (2015) examined the congruency of shapes in the field of 

computer vision. They developed an algorithm that could determine the congruency of shapes in 

digital images, enabling applications in object recognition and image analysis. The study 

demonstrated the practical implications of understanding and detecting congruent shapes in real-

world scenarios. 

Although previous research has made significant contributions to the understanding of 

congruency in shapes, there are still knowledge gaps that warrant further investigation.  

Overall, the literature on the congruency of shapes provides valuable insights into the 

fundamental principles, properties, and applications of congruent shapes. By building upon the 

existing research, future studies can deepen our understanding of shape congruency and its 

broader implications in various domains. 

Research Goals and Objectives 

The research aims to experiment with the conditions for the congruency and uniqueness of 

polygons. The following are the specific goals and objectives of the study: 

1. Investigate the effects of different conditions on the congruency of polygons:  

o Explore the impact of side lengths on polygon congruency. 

o Analyze the role of angle measures in determining polygon congruency. 

2. Analyze the uniqueness of polygons under varying conditions:  

o Examine the effects of side length ratios on triangle congruency. 

o Investigate the relationship between polygon uniqueness and the number of sides. 

3. Develop mathematical models and equations to determine polygon congruency and 

uniqueness accounting for different conditions affecting it. 
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Methodology 

Developing an Intuition 
 
Most of us have been taught in school that to prove two triangles congruent, we must be given 

certain information about them, such as two corresponding sides being equal in length, or two 

corresponding angles being equal in measure.  

 

Several criteria can be used to determine the congruency of triangles. These criteria include side-

side-side (SSS), side-angle-side (SAS), side-angle-angle (SAA), and hypotenuse-leg (HL) 

congruence.  

 

Each criterion specifies a particular combination of sides and angles that must be equal for the 

triangles to be congruent. Let’s prove them with basic geometry! 

 

Using the SAS case as a starter, we see that there 

could only be one way to complete the triangle by 

joining points A and C, given these conditions. So 

basically, to prove congruency, it’s the same as 

asking: 

 

“Given these restrictions or conditions, do they 

restrict our shape to a specific form, a unique form, 

or can there be multiple shapes that satisfy them” 

 

To model these conditions and analyze them geometrically, we will: 
 

o Label each side and angle with a number from left to right, for example,  𝑆1, 𝐴1, 𝑆2, which 

will be helpful later on when working with quadrilaterals and polygons in general. 

o Use the circumference of a circle to represent a side with an unknown angle, since every 

point on it will be at a distance “S” from the vertex. 

o Use a ray as an angle with an unknown side, since restricting the ray anywhere would 

represent a side at that given angle “A” to the adjacent side. 

o Consider an intersection between constructions as a point that satisfies both conditions of 

these constructions. 

 

We can see these tools in action in the following diagrams of the cases SSS, SAA, or ASA (both 

are the same in the case of a triangle) and HL. 

 

Even though in the case of SSS it appears to have two ways to draw the triangle due to the two 

intersection points, they are just mere reflections of one another, and hence the same shape. And 

it is clear from the figures that in the SAA and HL case there can only be one way to draw them 

given these conditions, due to one intersection point.



 

  

* HIRSCHHORN, D. B. (1990). Why Is the SsA Triangle-Congruence Theorem Not Included in 

Textbooks? The Mathematics Teacher, 83(5), 358–361. http://www.jstor.org/stable/27966706  
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The more general case of SSA * 

 

The cases SSS and SAA made sense to me since they were easily provable and quite general, but 

what I didn’t fully get was why the case HL existed. 

 

Yes, we have just proved it true, yet why is it so specific? Why is it only applicable in the case of 

a right-angled triangle? Why not have a more general condition as SSA? Since technically HL 

means that you are given two sides and a right angle attached to one side. Well, let’s see what 

SSA looks like!  

 

 

Although the SSA case seems intuitively valid, it is important to note that it does not guarantee 

congruence in all cases. There are situations where two triangles with the same SSA proportions 

and angle do not necessarily have congruent corresponding sides or angles. 

 

In the figures above, in the first case where 𝑆1 < 𝑆2. We can see clearly that the ray 𝐵𝐶⃗⃗⃗⃗  ⃗ intersects 

the circle centered at 𝐴 twice, producing two possible shapes ∆𝐴𝐵𝐶 𝑎𝑛𝑑 ∆𝐴𝐵𝐶′ which satisfy 

our initial givens. Hence, we still need more information to prove congruency and uniqueness.

S.S.S. S.A.A. H.L. 

http://www.jstor.org/stable/27966706
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Yet something interesting happens, as 𝑆1 increases and at some point, equals 𝑆2, as seen in the 

third figure, the second intersection point 𝐶′ is at point 𝐵 and therefore leaves us with a single 

unique triangle 𝐴𝐵𝐶, and as 𝑆1 exceeds 𝑆2 in length, point 𝐵 is inside circle 𝐴, which implies 

that any ray coming off 𝐵 will only intersect the circle once—proving its uniqueness! 

 

So, we can deduce that for the case of 𝑆1𝑆2𝐴 , congruency is guaranteed for 𝑆1 ≥ 𝑆2. In other 

words, the shape is unique under the condition that the side with two unknown angles is greater 

than or equal to the side with a known angle. 

 

Returning to the case of HL, this now makes perfect sense as the hypotenuse (𝑆1 or the side with 

two unknown angles) will always be greater than the leg of the right-angled triangle (𝑆2 or the 

side attached to the right angle). In other terms, HL is a special case of SSA. 

 

Congruency in Quadrilaterals 
 
Moving on to quadrilaterals, which are geometric shapes with four straight sides and four angles. 

Understanding the concept of congruency in quadrilaterals is essential for analyzing and 

comparing different shapes and their properties. 

 

So, what are exactly the cases under which a quadrilateral will be unique? Let’s explore the 

different possibilities and test to find out ourselves! 

 

Starting with the first case that comes to mind, SSSS, this can easily be proven insufficient by 

the following counterexample. 

 

As we can see even though these two shapes have congruent sides, it doesn’t mean at all total 

congruency. But if we add a condition that specifies a diagonal’s length, they will be congruent.  

 

That’s because the diagonal divides the quadrilateral into two 

triangles which both are unique due to the SSS case. So 

overall the quadrilateral will be unique and congruent to any 

other quadrilateral with the same given

Square Rhombus 
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But for consistency’s sake, let’s keep the givens restricted to sides and angles, with no diagonals. 

We can still use the trick of dividing the polygon into two triangles but instead of using the case 

of SSS and needing a diagonal as an input, we can use SAS as we can be given the angle 

between the two sides, SAA and SSA will not be viable as 

the angles that will be given do not represent the angles of the 

two smaller triangles. 

 

Well, we can start by laying the foundation which is SAS, 

and start by trying to expand on it to create a fourth point 

with a unique position. 

 

We can create an intersection by adding two angles at points 𝐴 and 𝐶, as in the following figure, 

creating a unique shape and proving congruency case ASASA. 

 

Or we can fix the position of the fourth point by using an angle and a side in series, as in the 

following figure, which also creates a unique shape and proves the SASAS congruency case. 

 

Also, we can use two consecutive angles proving SASAA true, which is different in this case 

from ASASA. You can imagine it as sliding the ray 𝐷𝐴⃗⃗⃗⃗  ⃗ along the ray 𝐶𝐷⃗⃗⃗⃗  ⃗ until it clicks with 𝐴.



 

 

For the case SSASA, we will encounter some problems as the SSA case, and hence we will 

apply some extra conditions to ensure congruency, take a look at the following figure. 

 

We get the same problem being that the ray produced by the angle intersects 

the circle twice producing two possible quadrilaterals 𝐴𝐵𝐶𝐷 and 𝐴𝐵𝐶𝐷′. Note 

that this is only the case when the quadrilateral is convex, since we can’t 

determine its convexity given this limited information, we will just assume that 

it is convex. 

 

The reason for that is presented in the figure to the right. When point 𝐷 has an 

angle greater than 180° (or under the yellow line visually), even if the ray 

intersects the circle twice, the second intersection creates a quadrilateral where 

two of its sides intersect (as seen in quad. 𝐴𝐵𝐶𝐷′), which is called a self-

crossing quadrilateral and, in this paper, we will only consider simple 

quadrilaterals, which are defined by being a non-self-crossing quadrilateral. 

So, after rejecting the second intersection there will only be one intersection at 

point 𝐷. 

 

Now returning to convex cases, in order to have only one intersection a 

condition must be satisfied which is that 𝐴𝐷 ≥ 𝐴𝐶, that is in order to make 

point 𝐶 inside of the circle centered at 𝐴, so that there can only be one 

intersection if the ray 𝐶𝐷⃗⃗⃗⃗  ⃗ and the circle’s circumference.  

 

As seen in the figure to the right. Since 𝐴𝐶 is not given, we can formulate it 

using the law of cosines, which states that in any given triangle, 

 

𝑐 =  √𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝜃 

Where 𝑎, 𝑏 and 𝑐 are the sides and 𝜃 is the angle between 𝑎 and 𝑏. Using it in ∆𝐴𝐵𝐶 yields, 

𝐴𝐶 =  √𝐴𝐵2 + 𝐵𝐶2 − 2(𝐴𝐵)(𝐵𝐶) cos(∠𝐴𝐵𝐶) 

So, writing the condition for which SSASA is true using the terminology of this case, 

𝑆1 ≥ √𝑆2
2 + 𝑆3

2 − 2(𝑆2)(𝑆3) cos 𝐴1 
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For the final case for quadrilaterals, it is SSASS, as shown in the following figure. 

Even though it would be logical to say it will always be congruent, since it is an SAS triangle 

attached to an SSS triangle, but then we will be dismissing the reflection of the SSS triangle on 

the line 𝐴𝐶, which creates a concave polygon 𝐴𝐵𝐶𝐷′. 

 

If there was a condition saying that the quadrilateral was either strictly convex or strictly 

concave, then this case would always be true. But let’s see if any conditions can be applied as in 

the cases of SSA and SSASA, which guarantee uniqueness and congruency in either case.  

 

As you can see in the figure to the right, there will be 

some cases where again, the second intersection will 

not result in a simple quadrilateral, which leaves us 

with a single unique shape, so how can we 

mathematically describe these situations? 

 

Well after some geometric analysis, we can see that they occur when the radius of one of the 

circles is in between the two intersection points of the other circle with the opposing side. 

Or as seen here when the point of the intersection of the circle centered at 𝐴 and the line 𝐴𝐵 is in 

the green line drawn out by the intersection of the other circle with the same line. 
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We can imagine it as holding a compass at 𝐴, and then drawing an arc that crosses 𝐴𝐵, for it to 

meet the arc of the other circle centered at 𝐶 on the other side of 𝐴𝐵, this arc must start before 

where the compass arc crossed 𝐴𝐵 and end after it. 

We can formulate it using basic geometry, we can use the following model of one of the sides. 

 

We want the length  𝑆1 to be between 𝑎 and 𝑎 + 𝑏, let’s define 𝑎, 𝑏 and the condition itself. 

𝑎 =  𝑆2 − 
𝑏

2
− 𝑆3 cos 𝐴 

(
𝑏

2
)
2

=  𝑆4
2 − 𝑆3

2 (sin 𝐴)2 

𝑏 =  √4(𝑆4)2 − 4(𝑆3)2(sin 𝐴)2 

 

𝑎 ≤  𝑆1 ≤ 𝑎 + 𝑏 

𝑆2 − 
𝑏

2
− 𝑆3 cos 𝐴 ≤  𝑆1 ≤  𝑆2 + 

𝑏

2
− 𝑆3 cos 𝐴 

− 
𝑏

2
≤ 𝑆1 − 𝑆2 + 𝑆3 cos 𝐴 ≤  

𝑏

2
 

|𝑆1 − 𝑆2 + 𝑆3 cos 𝐴| ≤  
𝑏

2
 

𝑏 − 2|𝑆1 − 𝑆2 + 𝑆3 cos 𝐴| ≥ 0 

 

√4(𝑆4)2 − 4(𝑆3)2(sin𝐴)2 − 2|𝑆1 − 𝑆2 + 𝑆3 cos 𝐴| ≥ 0 

Or 

√4(𝑆1)2 − 4(𝑆2)2(sin𝐴)2 − 2|𝑆4 − 𝑆3 + 𝑆2 cos 𝐴| ≥ 0 
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If either of them is true then the two quadrilaterals are congruent due to SSASS, and if there is a 

negative value under the root, then there is no intersection between the arc and the side to begin 

within this side, so the equation is false, but if the other equation is true, then the quadrilateral is 

unique and congruent to any quadrilateral with the same givens. 

 

This result is amazing, let’s test it on some cases! Here is a graph of how different 𝑆1 values 

would differ the output of the two equations given the other inputs, if our equations are true, then 

both graphs should only be above the 𝑥-axis when the 𝑆1 value results in a unique shape. 

 

And it works! On the figures to the right are the same inputs while varying 𝑆1, the shape is 

unique in two intervals, while 𝑆1 ≤ 1.4, the distance between 𝐴 and the intersection to its right, 

and when 𝑆1 ≥ 2.5, the distance between point 𝐴 and the intersection of 𝑆4 (the radius of the 

circle centered at 𝐶) with 𝑆3. 
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Developing a Pattern for Polygons in General 
 

Triangles Quadrilaterals 5-sided polygons n-sided polygons 

SAS SASAS SASASAS S(AS× (𝑛 − 3))AS 

ASA ASASA ASASASA AS(AS× (𝑛 − 3))A 
SAA SASAA SASASAA S(AS× (𝑛 − 3))AA 

SSA SSASA SSASASA SS(AS× (𝑛 − 3))A 

SSS SSASS SSASASS SS(AS× (𝑛 − 3))S 
 

The blue-shaded cells indicate the requirement of further conditions for congruency. As the 

number of sides increases these conditions get more and more complex, and that is an area of 

further research.  

 

As it is clear from this table the pattern is developed using the basic building blocks of triangle 

congruency, in this paper we have developed and discovered wonderful and intricate patterns for 

polygons in general, with a fixed unique unit being highlighted in red, and attachments that 

complete the polygon uniquely written in black. 

 

We can say that for a polygon with 𝑛-sides, it would require at least 2𝑛 − 3 congruent angles or 

sides to prove congruency, in the patterns in the table above. 

 

Discussion and Conclusion 

This paper's investigation illuminates the complex realm of polygon congruency and uniqueness, 

providing insights that go beyond the boundaries of mathematical theory. After looking at 

triangles and their well-known congruency standards, we delved into less-trodden areas like the 

Side-Side-Angle (SSA) scenario, which is sometimes ignored in the curricula We proved the 

validity of congruence theorems even in these less straightforward circumstances by rigorous 

geometric arguments, unveiling the fundamental ideas governing polygonal shapes. 

 

And we have built upon that by expanding with tools we were using in triangles to help us in 

quadrilaterals. By dissecting the conditions under which quadrilaterals exhibit congruence, we 

uncovered patterns and relationships that enrich our understanding of geometric structures and 

we deduced and formulated the congruency theorems for them. And from these two types of 

polygons, we deduced a pattern for polygons in general. 

 

The results of the SSASS and SSASA theorems and the general pattern for polygons were 

mentioned for the first time in this paper, I hope future research and analysis would result in 

formulating congruency theorems which are applied with restrictions beyond quadrilaterals. 

 
In conclusion, this paper serves as a testament to the enduring relevance of geometry in our 

modern world. By unraveling the mysteries of polygon congruency and uniqueness, we not only 

deepen our appreciation for the elegance of mathematical reasoning but also empower ourselves 

to tackle the challenges of tomorrow with confidence and ingenuity. 
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