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1 Introduction

In 1822 Jean- Baptiste Joseph Fourier, a French mathematician and physicist, published his famous
work, The Analytical Theory of Heat. He explored the concept and mathematical representation of
heat transfer between two bodies, based off of some of Newton’s previous work. Unbeknownst to
him at the time, he also pioneered one of the most influential spheres of mathematics of the modern
world, extremely relevant to areas like Engineering, Physics or even Computer Science.

Joseph Fourier was the father of Fourier Analysis, a topic in which I hope to provide a brief
yet intriguing glimpse into, from a mathematics perspective.

The core idea behind Fourier Analysis, is the idea of a Fourier Series, the representation of a
function as an infinite sum of some variation of trigonometric functions; that is to say, sines and
cosines. This may seem quite random,and at first glance, its applications are non-trivial, but over
hundreds of years it has proven its usefulness time and time again.

For one, its original purpose. Fourier Analysis greatly simplifies the study of heat transfer,
exactly what Fourier set out to do in his manuscript.But in a more modern setting, the idea of
the Fourier series is still greatly useful. The modern world runs on waves, sound waves for talking
with each other, radio waves for your telephones, infrared waves for your TV remotes, waves are
everywhere. You should recall from early studies of trigonometry in school, that sine and cosine are
mathematical representations of waves, functions that oscillate up and down between a maximum
and a minimum.A fairly simple idea. Since waves are so prevalent to our day to day lives, especially
in technology, we need a way to manipulate them to our advantage.Let’s look at a brief example.

Imagine you are recording a video next to something very noisy, a main road perhaps. You
probably don’t want to hear the loud droning noises of cars rushing by as you’re trying to record
your voice, for example. But a lot of modern audio editing tools can clean this noise up for you will
little effort. How do they do that? It turns out, by decomposing the raw sound waves into lots and
lots of sine and cosine waves, all with different frequencies and amplitudes (a process called Fourier
Transformation , we can simply remove the waves that have frequencies and amplitudes that we
don’t like, the noises of the cars in this case, and then rebuild the new, desired sound (Fourier
Synthesis). This is just one of many applications of Fourier Analysis.

In this essay, I hope to break down the derivation of the Fourier Series, and explain how to turn a
function into a sum of trigonometric functions. It may sound daunting, but not to worry, it’s much
easier than it sounds.
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2 The Theory

In the Introduction, I touched on the Key idea of a Fourier Series, but formally, it states that: Any
periodic function can be expressed as an infinite series of trigonometric functions.
There are a few things that are worth discussing more. Firstly, what is a periodic function? Given
the name, if you guessed that it probably has something to do with the function repeating itself
periodically , and you would be correct. One of the simplest and most well known periodic functions
is the sine function

Figure 1: sin(x)

We can see that this function repeats itself, oscillating between 1 and -1 every 360 degrees or
2π radians. We can use this idea to formally define a periodic function. A periodic function is
a function that repeats itself on an interval with width L The sine function repeats itself
every 360 degrees, so in the case of sine, L = 2π (2π radians is 360 degrees).

Figure 2: Sin(x) has interval L = 2π

It is clear to see that every area between each set of purple lines is exactly the same as each other,
thus showing the periodic nature of the function. It is also worth noting that this is true for any
section of the function with width 2π. This is all well and good, but as we know, sine is already
a trigonometric function ; but what about other periodic functions, that aren’t trigonometric?
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Consider this square wave. This isn’t even close to a trigonometric function, but we can clearly see

Figure 3: A square Wave

that it’s periodic. It jumps between 1 and −1 forever. In fact, the square wave cannot be explicitly
defined as a mathematical function, but we can approximate it. This process is usually easier to
understand by reverse engineering it. Below is the formula for a Fourier Series.

f(x) = a0 +

∞∑
n=1

(an cos(
2πnx

L
) + bn sin(

2πnx

L
)) (1)

But what is this monstrous looking formula? Let’s start by making sure we understand each piece
of it.

2.1 Summations

what does this big Greek letter
∑∞

n=1 mean? What are the numbers on the top and bottom? It is
quite simple really. n starts from 0 and is incremented by 1 until it reaches the number on the top.
Every time we do this, we add up the expression inside with the relevant value of n. Consider this:

n=5∑
n=1

n = 1 + 2 + 3 + 4 + 5 = 15

As you can see, we add up n but for every term we add, the value of n increases by 1. Similarly:

n=3∑
n=1

2n = 21 + 22 + 23 = 12

and one more example:

n=4∑
n=1

sin(nπ) = sin(π) + sin(2π) + sin(3π) + sin(4π) = 0
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2.2 Trigonometry

Lets look at what the trigonometric terms represent. Consider:

sin(x) (2)

As we already know, sin(x) has period of L = 2π, but what if we want to specify the period? To
make life easy for ourselves, lets compress the function so it has period 1. We can do this simply
like by multiplying x by 2π:

sin(2πx) (3)

What have we just done here? Usually, once x = 2π, sin(x) = 0. By multiplying x by 2π, x now
only needs to be 1 to obtain sin(2π) = 0. We have therefore compressed the function so it has

Figure 4: A sine graph with period 1

period 1. We can see the use of this in the next step:

sin(
2πx

L
) (4)

We have done this so that once x = L, we once again obtain sin(2π) = 0. In a very similar chain of
thought to the last step, we have now defined the period of our function to be = L, where we are
free to choose a value of L. And finally, we can specify the frequency; the number of oscillations
every given period, by multiplying by n, to give us:

sin(
2πnx

L
) (5)

Where n is a whole number, representing the number of oscillations.
This same chain of steps holds for the cosine term as well. If we now bring this back into context,If

we add up terms as n is increased from 1 all the way to infinity, we see that we are adding sine and
cosine terms with a fixed period and increasing frequency; since the frequency is controlled by
n. We haven’t got the full story just yet, we still don’t know how to calculate the initial term a0
and the coefficients; an and bn, but at this point, it’s worth taking a look at what this formula
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actually does. Lets go back to our square wave, For now, you’ll just have to trust me on the fact
that the Fourier series for the specific square wave that oscillates between 1 and −1 is:

4

π
sin(πx) +

4

3π
sin(3πx) +

4

5π
sin(5πx) +

4

7π
sin(7πx)... (6)

This is an infinite series. Lets look at what happens as the number of terms increases.

Figure 5: 1 term

Figure 6: 2 terms

Figure 7: 3 terms

Figure 8: 10 terms

And would you look at that! Its clearly shown that as we increase the number of terms our
approximation gets better and better, slowly approaching a ”pure” square wave. This is quite nice
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Figure 9: 20 terms

for us, as we have explicitly shown the original conjecture, we have written a periodic function
as the sum of trigonometric functions We can’t pat ourselves on the back for too long, however,
as we are yet to find the coefficients. Earlier, I explicitly stated the formula for the series of a
square wave,but how did we actually arrive there? Why are there no cosine terms? To answer this,
we’re going to need to draw on some more theory,namely a few important integrals.

2.3 Some Useful Integrals

You may think this is quite a random aside, but I assure you it will be very relevant to what we’re
trying to achieve. Before I start, even if you don’t have much knowledge of what Integration is or
how it works, there’s really only one important fact to remember. The value of an integral of a
function between two points, is equal to the area under the curve between the same two
points If the line is below the x-axis, the result of the integral will be negative. This is important,
so remember this.

Figure 10: The Integral is the Area under a curve

∫ L

0

sin(
2πnx

L
) cos(

2πmx

L
) dx

Lets get started.Consider the integral above.We see that the expression inside the integral, the
integrand is the product of two very familiar functions. Just notice that the sine term contains an
n, while the cosine term contains and m, where n and m can be any positive integers. This shows
that the functions do not have the same frequency, except in the case of n = m. Also that the
integral is taken over 0 to L, the period. in other words, we are finding the area under the curve
through a whole number complete oscillations. This integral may look complicated to actually
evaluate, but we can actually evaluate it purely with some good mathematical reasoning. Lets look
at the graph of sin(x) cos(x) (next page) specifically between 0 and L, where L = π in this example:
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Clearly, the graph has nicely done a single,full oscillation. So what happens if we integrate this over

Figure 11: sin(x)cos(x) between 0 and L

its period? Well, if we remember that the integral just gives us the area between the curve and the
x-axis (where the result is negative if the curve is below the x-axis), we can see that because the
curve has gone a complete oscillation, the area above and below the x axis is exactly the same. Since
above the x axis is positive, and below the x axis is negative, if we add these together we get 0.This
is quite nice for us. OK, but what about n and m? How do they affect this idea? They are distinct
two different numbers after all.To answer this, we’re going to make use of some trigonometric
identities. You don’t need to know where they come from or how they’re derived, just know that
these relationships are always true. In this case we will use the product to sum identities, that
state:

sin(a) cos(b) =
1

2
(sin(a+ b) + sin(a− b)) (7)

sin(a) sin(b) =
1

2
(cos(a− b)− cos(a+ b)) (8)

cos(a) cos(b) =
1

2
(cos(a+ b) + cos(a− b)) (9)

Lets apply this to the integrand, with a = 2πnx
L and b = 2πmx

L . We get:∫ L

0

1

2
(sin(

2πnx

L
+

2πmx

L
) + sin(

2πnx

L
− 2πmx

L
)) dx

And if we simply factor out 2πx
L , from the insides of both trigonometric terms, we get:∫ L

0

1

2
(sin((n+m)

2πx

L
) + sin((n−m)

2πx

L
)) dx

Both terms in the integrand still complete a whole number of oscillations, (since n and m are both
positive integers), but we just need to be wary of the special case n = m. Luckily for us, the integral
still turns out to be zero as the second sine term becomes sin(0) = 0 when n = m. Lets do this
process for two more integrals: ∫ L

0

cos(
2πnx

L
) cos(

2πmx

L
) dx

This one contains two cosine terms. By using our product to sum identities and factorising in the
same way as before, we get:∫ L

0

1

2
(cos((n+m)

2πx

L
) + cos((n−m)

2πx

L
)) dx
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We have to check the special case again. This time when n = m the second term becomes cos(0) = 1
(the first term still becomes 0 as it completes a whole number of oscillations). If this happens, the
integral will essentially become:

1

2

∫ L

0

1 dx

We’ve just taken the half outside the integral there, but his is quite literally the easiest integral we
could ask for.It is evaluated as such:

=
1

2
[x]L0 =

L

2

So the above integral is imply equal to 0 when n ̸= m and L
2 when n = m. We have one final

integral: ∫ L

0

sin(
2πnx

L
) sin(

2πmx

L
) dx

This one with two sine terms. Again, by following the same process, we obtain:∫ L

0

1

2
(cos((n−m)

2πx

L
)− cos((n+m)

2πx

L
)) dx

And similarly by checking n = m, the first term becomes 1 and the other is always 0. In exactly the
same was as the last one:

=
1

2
[x]L0 =

L

2

There is a special name for functions that behave this way. Two functions f(x) and g(x) are said
to be Orthogonal if: ∫ b

a

f(x)g(x) = 0

2.4 The Coefficients

Alright, now that we’ve established this, how does it help us? If you remember, we were on a quest
to try and find the missing coefficients of the Fourier Series, but just spent two pages working with
seemingly unrelated integrals. Let’s begin to tie all this theory together. Let’s recall our original
equation, way back from the start.

f(x) = a0 +
∑

(an cos(
2πnx

L
) + bn sin(

2πnx

L
))

Lets begin by tackling a0. As it turns out, all the coefficients including a0 will be defined in terms
of f(x); in other words, the function itself will affect what the coefficients of its Fourier series are.
Let me show you what I mean. The integrals we just showed were not, in fact, unrelated. Look at
what happens if we integrate both sides across 0 and L∫ L

0

f(x) =

∫ L

0

(a0 +
∑

(an cos(
2πnx

L
) + bn sin(

2πnx

L
)))

Can you start to see what we’re getting at here? What happens to the trigonometric terms as we
integrate over their period. You guessed it, they all become 0. Thus, we are left with:∫ L

0

f(x) =

∫ L

0

a0
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Since a0 is a constant, we can easily evaluate this:∫ L

0

f(x) = [a0]
L
0 = a0L

And therefore:

a0 =
1

L

∫ L

0

f(x)

To find the an and bn coefficients, we again use the theory we established earlier, in quite a clever way.
What happens if we multiply both sides by cos( 2πmx

L )? Well, every single term in the summation
will be multiplied by it, and thus will all integrate to zero, as we’ve shown before. EXCEPT for
when n = m. Remember how a summation works? Each term is created by plugging in an integer
value of n, adding onto the sum and then incrementing n.Therefore, if we are summing from 0 to
∞ and m is some positive integer, there will always be the case that one term will satisfy the case
n = m. Therefore: ∫ L

0

f(x) cos(
2πmx

L
) =

∫ L

0

an cos(
2πnx

L
) cos(

2πmx

L
)

Since an is a constant, we can factor it out of the integral and evaluate it. If we recall that∫ L

0
cos( 2πnxL ) cos( 2πmx

L ) dx = L
2 for n = m, we get∫ L

0

f(x) cos(
2πmx

L
) = an

L

2

and thus:

an =
2

L

∫ L

0

f(x) cos(
2πnx

L
)

And using the exact same logic to find bn, except we multiply by sin( 2πmx
L ), we get:

bn =
2

L

∫ L

0

f(x) sin(
2πnx

L
)

Note: I have replaced m with n in both cases, to avoid confusion. It will intuitively make more
sense to use n, since n = m anyway. Now we have all the pieces of the puzzle, it’s time to see how
it all works together. Let’s compute the Fourier series of a square wave that oscillates between 0
and 1 periodically, right from start to finish. First of all, how do we represent a square wave as a
function? Lets define our square wave to be:

f(x) =

{
1, 0 < x < π

0, π < x < 2π
f(x+ 2π) = f(x) (10)

We have made a piece-wise function , that is, a function defined on a sequence of intervals.All
we’ve said here is that f(x) will equal 1 when x is between 0 and π, and equal 0 when x is between
π and 2π. We have also made f(x) periodic with L = 2π, thus representing our square wave. Now
let’s use this to calculate a0, an and bn, with L = 2π and f(x) being defined above.

a0 =
1

2π

∫ 2π

0

f(x)
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We can take advantage of the nature of f(x) here. We know that between π and 2π, f(x) = 0.
Therefore, wouldn’t it be nicer if we split the integral into two parts and see what happens?

a0 =
1

2π
(

∫ π

0

f(x) +

∫ 2π

π

f(x)) =
1

2π
(

∫ π

0

f(x) +

∫ 2π

π

0) =
1

2π

∫ π

0

f(x)

We have effectively cut the integral in half, and now we only need to consider f(x) for x between 0
and π, which we have already defined to be 1. Therefore we have:

a0 =
1

2π

∫ π

0

1 =
1

2

Nicely done. Now similarly for an and bn we can use the trick of only considering the first half of
the limits:

an =
2

2π

∫ π

0

1 cos(
2πnx

2π
)

And with some simplifying:

an =
1

π

∫ π

0

cos(nx) = [
1

π

1

n
sin(nx)]π0 =

1

π

1

n
sin(nπ)

Since n is a whole number, the sine term will be 0 for any value of n. This is because sine of a whole
number multiple of π is always 0. Therefore an = 0 for all values of n. Now for the bn term.

bn =
1

π

∫ π

0

sin(nx) = [− 1

π

1

n
cos(nx)]π0 = − 1

nπ
(cos(nπ)− 1)

This integral is a little bit more interesting. When cosine takes an even multiple of π it is equal
to 1, but when it takes an odd multiple of π it is equal to −1. Therefore if n is even, cos(nπ) = 1
and bn = 0. But if n is odd cos(nπ) = −1 and bn = 2

nπ . What does this look like when we expand
our original definition for a Fourier Series?

f(x) = a0 +
∑

(an cos(
2πnx

L
) + bn sin(

2πnx

L
))

For each term, we plug in the value of n and hence an and bn. n starts from 1 and is continually
incremented to infinity. Lets see this in action.

f(x) =
1

2
+ 0 +

2

π
sin(x) + 0 +

2

3π
sin(3x) + 0 +

2

5π
sin(5x)....

Here we can see the series in full. Notice how there are no cosine terms, because an is always 0, as
we’ve shown earlier, and that any term where n is even becomes 0. Because there is clear pattern
here, we can nicely compact this equation to look like this:

f(x) =
1

2
+

2

π

∞∑
n=0

1

(2n− 1)
sin((2n− 1)x)

Let’s visualise this in the same way we did before.
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Figure 12: 1 term

Figure 13: 2 terms

Figure 14: 5 terms

Figure 15: 40 terms
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2.5 Conclusion

And thus we’ve computed the Fourier series for a square wave from start to finish. To recap, we
explored how to decompose any periodic function into an infinite series of trigonometric functions,
the foundation of Fourier Analysis. While this essay gave an introduction to the topic, the journey
doesn’t need to end here. Fourier Analysis is an incredibly expansive topic, and its study will open
up doors into many exciting areas of Science, technology, engineering and mathematics. I hoped
I’ve been able to spark a new passion for any aspiring mathematicians and beyond. Thank you for
reading.
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