
DEFENDING DEFENDERS: PROVING LESS IS MORE WITH REGRESSION ANALYSIS

Maths governs everything. From the speed of the sunrise to the eyes that observe it, all can
be modelled with simple numbers layered on top of each other to make complex
observations. This was, however, probably not the thought going through Liverpool FC’s
Virgil Van Dijk’s mind as he was last bastion of resistance to 6 foot 5 “Viking goal machine”
Erling Haaland. Instead, he was furiously sorting through the decades of his experience
spent playing the game to calculate how not to let Haaland bury the ball in the back of the
net. Curiously enough, the conclusion he came to was to do… nothing! Instead of making a
tackle, he used his body as a shield until Erling had to try and shoot around him before he
dribbled into the goalkeeper. The shot was tame, and Van Dijk came out on top.[1]

Classical football analysis will tell you that tackling is always a good thing; if you’re not
getting stuck in enough, you’re a liability. This idea is present through all of football, but the
most prominent propagation of this story occurs in the very statistics sites that claim to be
objective: of the 8 defensive actions (as defined by Opta match actions)[2] measured on the
official Premier League stats comparison site, 3 of them are measuring tackles[3]. In other
words, the biggest football league in the world says 37.5 percent of a player's defensive
capability is purely based on their tackling ability. As I said earlier, maths rules all. So how
can we use the numbers available to us to test the assumption that tackling is king?

PART ONE: DO THE ENDS JUSTIFY THE MEANS?

To get our answer we must start at the question. What exactly are we comparing here? Well,
we’re seeing if more tackling leads to better defending. Obviously, we want to know
something about tackles over a set period of time. As football is helpfully played at one game
per time, we can use that as our starting point.

First things first we need data. The information in this table was provided by
whoscored.com[4] and footystats.org[5]



Second, we want to see how many tackles a team made in all their games in a season
(we’re only measuring over one season because between seasons a team’s quality and
style can change so much, it’s impossible to directly compare any statistic to quality of
defence). Let’s say that the number of tackles made in a particular game by a particular
team in a particular season is ti, with i representing whichever number game in the season
you’re selecting or our “index number”.

Then, to see the number of tackles made in that season, we add all the ti values up. In

notation, we represent the operation of summing all of a type of thing together as , with z
𝑖=𝑧

𝑛

∑

representing the index number where you start adding, and n being where you stop. So in



our case, we want to start from the first game so i=1, and finish at the last game, so we’re
going to n. As the number of games in a season can vary from country to country or even
level to level, we just keep n as a variable. This means all the tackles a team made over a

season can be represented as ti.
𝑖=1

𝑛

∑

Next, we want to divide this number by the number of data points you’re summing, or in our
case all the games played in a season (n). This will give us the number of tackles normally
made in a game, or their mean tackle rate. We will write this as with the bar representing𝑡
that this new number is the mean value for any given set of numbers. This gives us the
equation
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For instance, Nottingham Forest tackled 660 times in 38 games[6] in the 2022/23 season, so
n=38 and

ti = 660. Therefore, in Forest’s case =
𝑖=1

38

∑ 𝑡 660
38 = 17. 4 

So now we have our first value; how much is a team normally tackling. Next we want to find
how good a team’s defence is, which we can measure by goals conceded; if you’re
defending well, you’ll concede less. So according to normal theory, as tackles go up, this

number should go down. Replacing tackles with goals conceded per season ( ) into our
𝑖=1
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previous equation, we get
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We’re not done yet though. What we’ve done is found how good a particular team's defence
is and how often that particular team tackles. This information is useless on its own, because
we need to see how effective one team is compared to everyone else. So, we’ll find an
average of averages, which we’ll represent by prefixing the mean values we already have
with μ.

= and = ) which are 16.985 and 1.4265 respectively.𝑖=1

𝑛
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Please note three things: normally, we do not average averages because often different sets
of data are larger than others, so it unfairly weights toward some values and skews our final
number meaning we almost never see and μ next to one another. However in this case
every team has played the same number of games so they are all equally weighted, so it is



faster to just average the averages (if you want to test it, go to a Premier League team stats
site and first average any stat per game for the league average and then average all the
stats per team per game for the league average. You get the same number) and that is the
best notation I could think of.

Secondly, n now represents the number of teams who’s averages you’re summing, not the
number of games in the season. This is because we’re summing team averages together
now, not game statistics.

Finally, the index number is no longer which game you are looking at, it’s now which team
you are looking at. This means the index number of a team's tackles and goals conceded will
be the same number, because that number now represents the team no matter what order
you put the teams in.

Now we know how much a team tackles, how good they are at defending, the league
standard for defending and the league standard for tackling, how do we see if tackling
correlates with good defence?

PART TWO: MISSING PEARSONS

There are vast numbers of ways to calculate a correlatory link between data points, but we
are going to attempt to derive a relatively simple one. First, we want to see if one variable
changes, how much can we expect the other to. Or in other words, if a team is tackling more,
will they concede more or less goals, and by how much?

This can be found using the covariance formula. When we’re calculating covariance, we
simply pick a team, see how different their number of tackles and goals conceded are from
the mean by subtracting the mean from both.
(𝑡
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Then, we multiply both differences together to see how much one has influenced the other.
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This can be intuitively explained by the following: if a deviation of tackles from the mean only
leads to a small deviation of goals conceded from the mean, then when you multiply both
deviations together you will get a smaller number than you would if a large number of tackles
lead to a larger deviation of goals conceded as a small number multiplied by a big number
gives a smaller value than a big number multiplied by a big number.

We add all of these “influence numbers” together, and then divide them by n-1 to get an
“average influence number”, which we call our covariance, giving the formula.
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Or in our case
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Note we use n-1 not n as we are using sample means to find our covariance, so we lose a
bit of information. Subtracting 1 from n accounts for this loss in information. We didn’t do this
earlier as all the means were equally weighted, so we had lost no information on the data.

If we use the 2022/23 Premier League season statistics, we get a covariance of 0.425
tackle-goals per team per game. This isn’t very helpful though, as it only gives us a number
specifically in goals to tackles, not just general correlation. It would be much easier to
interpret our results if it were a number between 1 and -1, with the closeness to 1 or -1
representing how strong the correlation was. So let’s do that.

This can be accomplished by dividing covariance by the standard deviation of each number
multiplied. Standard deviation means the usual amount of deviation from the mean that a
number has, so the average result of . Unfortunately, we cannot find the(𝑥
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average result by just adding all the deviations and dividing them by n-1 this time, as by
definition all the positive deviations and negative deviations from the mean just sum to 0.
However, we can square and then square root all deviations to make them all positive and
then divide them by (we divide by not n - 1 because we are still using𝑛 − 1 𝑛 − 1
samples, and we want to account for the fact that the data will probably be much more
spread than our little sample, so we want our final answer to be bigger, so we make our
denominator smaller and square root it) to find a positive deviation average,
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All we need to do now to find our correlation number is divide our covariance by the product
of both standard deviations. Intuitively this is because we are taking the real product of our
deviations and dividing it by the product of what they should be, which both cancels our units
as we’re dividing x and y by x and y giving us a value between 1 and -1 and tells us how
much one influences the other no matter how random our spread of data should be. We can
quantify this as
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We can multiply the values to get the equation𝑛 − 1
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We cancel the n - 1 values and expand our square root to get
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This is called Pearson’s correlation formula, and the number we are calculating is called
Pearson’s correlation coefficient. This is a branch of statistics called regression analysis[7],
because we are measuring how numbers regress from the mean.

Plugging our Premier League data into the equation, we get =0.632.𝑟
𝑡,𝑔

With this number, however, there is a very small chance that this could be a coincidence. We
must note how small that chance is to show that our answers remain valid, and also to
calculate the strength of our correlation. The boundaries of different probabilities, or “critical
values” can helpfully be looked up in a table, where you subtract two from the n value of
numbers in your set and go along from the side. This table is provided by the University of
Sussex[8]

If we subtract two from our n value, we get 18. Going along, we see that the probability of a
Pearson number to be coincidence beyond .561 is <0.01, and as our value is 0.632 we and
0.632>0.561 there is less than 1% chance of our number being random and we have a
strong correlation.



This means when you tackle more, you concede more. Plotting our points onto a graph we
can visualise the data like this:

Hm. Now that's surprising. Or is it?

PART 3: RUSSIAN DOCTORS

In the 19th century, Russia underwent a cholera epidemic. This was devastating to the
nation, so doctors were sent from the capital to find and eliminate outbreaks as soon as they
were reported. The issue is, they were too good at rapid response. When locals began
noticing that as soon as doctors turned up to a village, people began dying of cholera they
put two and two together to make five and began chasing the doctors from their villages.
Needless to say, this did not bode well for the doctors or the villagers.[9] So, how can we
avoid their mistakes?

The point of that story is to illustrate that correlation does not necessarily imply causation,
and even though one thing might happen increasingly with something else, it does not cause
the other to occur. While it is true that you require correlation for causation to be drawn, we
do not always draw causation from correlation. So, while we have already proved that a
team that tackles more probably has a worse defence, with the numbers we have we cannot
say tackling is making that defence better or worse. That, however, is what we want to find
out. To do this, we must separate the strength of defence from the strength of the team.

To measure the strength of a team I will use ball possession per game, or for how much of a
game is a team on the ball for. This is for two reasons: firstly, possession has a very strong
influence on both goals conceded and tackling. If a team is on the ball a lot, they both do not
tackle the ball. On top of this, when they have possession, they can control where the ball
goes, namely the not the back of their own net. Secondly, possession is a very good



indicator for team strength as that is almost always the objective of top teams in modern
football, especially English football, so the better teams will have more possession. As
possession influences both of our statistics, we call it a confounding variable. Let us define
percentage possession for a particular team for a particular game as .𝑝

𝑖

Using the maths we did in the last two parts we can calculate which is𝑟
𝑝,𝑡

=− 0. 4033

graphically represented as:

As predicted, there is an inverse correlation between tackling and possession. Next, we
calculate -0.6298, which is graphically represented as (turn to the next page):𝑟

𝑝,𝑔
=



What we want to see is how many goals a team’s defence concedes against tackles, bearing
in mind possession.

To calculate correlation between , bearing in mind the influence of (possession), we𝑥 𝑦 𝑧
take and subtract the product of and from it. This is because we are doing a very𝑟

𝑥,𝑦
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similar thing as what we were doing in Pearson’s earlier: the product of and𝑟
𝑥,𝑧

𝑟
𝑦,𝑧

represents how much they change with one another, so subtracting them from the general
correlation should account for their influence. Then, as we did with Pearson’s, we divide by

to control for how far away from 1 possession based r values should(1 − 𝑟
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be and to normalise the equation to between 1 and -1 again. This gives us the equation
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where the correlation bearing in mind the influence of z, also called the partial𝑟
𝑥,𝑦.𝑧

=

correlation coefficient. Finally, the effect of tackles to goals conceded bearing in mind team
strength is 0.632−(−0.6298·−0.4033)

(1−(−0.4033)2)(1−(−0.6298)2
= 0. 5318

CONCLUSION:

Calculating the critical values for the partial correlation coefficient is much more complex
than for our r value and there are no readily available tables we can use online, but merely
looking at our value and the reasonable size of our dataset shows us that this number is
statistically significant.



This number suggests to us that between the ranges of average tackles teams made in the
2022/23 season in the Premier League, even accounting for different team strengths
influencing rate of tackling and goals conceded naturally, telling your team to tackle has a
correlative relationship with conceding goals. As we have removed our confounding variable,
the data suggests a causal relationship between tackling and conceding. This may be
because when Premier League teams encourage tackling, they neglect other defensive
techniques or because a team that is tackling is a team that is not employing a proper
“defence in depth” strategy and is pushing too high up to win the ball. Whatever the reason,
tackling more is not a good thing, in fact, it is a bad thing and telling everyone to get their
boots muddy will often spell doom for the manager.
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