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1 Introduction 

Fractals are a part of maths that I had never really considered as maths at all. In comparison to 
the complex equations and proofs that I saw elsewhere, fractals seemed like nothing more than 
a fun extension of geometry. I was wrong. Fractals are a visualisation of infinity and the more I 
have learned, the more I have realised that fractals have exceptional implications, ones that 
apply to every area you could imagine. 

But taking a step back, to the real world, where shapes need to have boundaries, I realised that 
fractals don’t make any sense.  

Except that they do. That’s the reality of fractals, a series of counterintuitive steps that can never 
physically function, shapes that do not adhere to the rules of standard geometry. It is an area of 
mathematics that is always changing and evolving, and as such provides an interesting subject 
to understand. In this essay, I will introduce the idea of a fractal for an audience that may not 
have encountered them before, give examples for each type, explain the features that make it so 
interesting, and show why I believe fractal geometry to be the most exciting area of modern 
mathematics. 

 

2.0.0 What is a fractal? 

 2.1.0 History 

The term “fractal” was first used by mathematician Benoit Mandelbrot in 1975 to 
describe objects and shapes that could not be explained with traditional geometry. As 
this suggests, fractals are a very new section of maths, primarily driven by the increasing 
power of computer technology and the use of algorithms. In 1980 the first fractal – The 
Mandelbrot Set – was generated: 5 years after its original conception. It is undeniable 
that Mandelbrot was the pioneer of this area of mathematics, his boldness in the face of 
a subject that could not yet physically be processed shows his dedication to this topic. 

 

 2.2.0 Definition 

Fractals are complex, never-ending patterns created by repeating mathematical 
equations. These come in many forms but generally fractal patterns are self-similar in 
nature, meaning that zooming in would result in a similar if not identical image. Fractals 
are inherently counterintuitive and do not function in a physical context, yet research 
into them is far from useless, and the ramifications of fractal research could have 
incredible benefits in the real world. 

 

 

 



2.2.1 Non-Definition 

The idea of fractals as only self-similar shapes is a huge oversimplification of the 
true depth that Mandelbrot had in mind. For him, fractals were a shift away from 
the idealisation of calculus as seeing the world as smooth. He wished not to 
create some new abstract field of mathematics, but to more firmly grasp the true 
nature of the world around us. He began his research with self-similar shapes, 
but the true idea of his research was to model a basis for the natural world. 

 

 

 2.3.0 Examples 

Fractals are generally placed into two classifications: “additive” and “subtractive”.  

  2.3.1 Additive 

Additive fractals are created by beginning with a simple shape and then 
repeatedly adding to the pattern on infinitely smaller and smaller levels. These 
were the first type of fractals to be modelled, and are definitely the most well-
known. 

Examples of Additive fractals are: 

• The Mandelbrot Set 
• Koch Snowflake 
• Newton Fractals 

 

  2.3.2 Subtractive 

Subtractive fractals are created by beginning with a simple shape such as a 
circle or triangle, and then repeatedly removing area by cutting out a 
mathematically similar shape that fills the maximum area possible. 

Examples of Subtractive fractals include: 

• Sierpinski Gasket 
• Menger Sponge 
• Apollonian Gasket 

 

 

 

 

 

 

 



3.0.0 Properties of fractals 

 3.1.0 Additive  

For our example, we will take the Koch Snowflake, as it is a polygonal fractal. 

 

 

 

 

  3.1.1Perimeter 

Take an equilateral triangle, side length 1. The perimeter is 1+1+1=3. On each of 
the sides divide the line segment by 3 and add a new equilateral triangle onto the 
middle third. This new shape has 12 sides of length 1/3, making the perimeter 4.  

Repeating this process gives perimeters forming the sequence: 

3, 4, 48/9, 192/27 

To get from one term to the next, we must multiply by 4/3. 

The iterative formula for this process is: 
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As n tends to infinity: 
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the perimeter of the Koch Snowflake is infinite.  

Obviously, in the real world, we can recognise that this is not physically possible, 
however shockingly this is perhaps the least confusing property of fractals, the 
truly exceptional features lie ahead of us. 

 

 



 

  3.1.2 Area 

Take the same equilateral triangle we began with, side length 1.  

We can use the formula for the area of a triangle: 1
2

𝑎𝑏 sin 𝐶 to find that the 

original area will be √3

4
. 

Repeating the process of the previous calculations, we add triangles of side 

length 1
3

 to each side. The area of each new triangle will be √3
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Repeating this process leaves the sequence of areas as: 
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As is apparent, each new iteration of the sequence is a summation of the 
iterations before it, with an ever-smaller area being added on each time. This 
sequence can be reduced to this formula: 
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Where s is the original side length, k is the iteration number, and n is the limit 
that would leave the area of the true Koch snowflake.  

This iterative formula can be explained in simpler terms as:  

“At the kth iteration we add 3 ∗ 4𝒌−1 more triangles of √3

4
(

𝑠

3𝑘)2 area each. This is 

then added to the previous value for the area.” 

It is often assumed that as infinitely many triangles are being added, the area of 
the Koch snowflake will also be infinite. However, because each set of triangles 
that is being added are of smaller area than the last, the total area converges to 
a limit, that -whilst it cannot be reached- is an infinitely close approximation of 
the area. This limit is: 

2√3

5
𝑠2 

As we took the original side length to be 1 unit, the final area contained within 

the Koch snowflake we have been using is 2√3

5
 squared units. 

 

 

 

 



 

3.1.3 Dimensionality 

One interesting feature of fractals is their breaking of the concept of dimensions. 
Generally, dimensions are thought of as the plane of space that an item 
occupies. Therefore, you may say, the Koch snowflake is clearly 2 dimensional.  

However, the dimension of a fractal can also be defined using a fractal 
dimension, which – whilst nonsensical with real-world logic – is soundly proved 
with mathematical concepts. 

The core concepts of fractal dimension lie in how they scale between self-
similar points. For example, take a square of side length 1. This square is made 
of 4 mathematically similar smaller squares, each of side length 1/2.  

1/4 = (1/2)² and we take the exponent as the dimension, meaning that a square is 
two dimensional. This concept holds true for a cube as well. It can be split into 8 
cubes of 1/2 side length. 1/8 = (1/2)³, so a cube is 3 dimensional. 

Determining the dimension of a Koch snowflake is complicated and too 
advanced for this introductory level essay. But a Koch snowflake is constructed 
of 3 Von Koch curves that are put end to end, which will have the same 
dimensionality as a Koch snowflake with the area removed , so this is what we 
will use.  

Assume a van Koch curve with a length from one end to the other of 1. It can be 
broken into 4 similar curves of length 1/3. Using the idea that we have previously 
defined: 

1

4
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This is the same as: 

4 = 3𝑥 

By using logarithms, we can find x: 

log3 4 = 𝑥 ≈ 1.26 

Thus, a Van Koch curve must be 1.26 dimensional. 

 

  3.1.4 Why it doesn’t make sense. 

The idea of non-integer dimensions obviously doesn’t make sense to the average 
mind; however, I believe that the more perplexing feature of additive fractals is 
that they have an infinite perimeter that defines a finite area. When I first began 
research for this essay, I expected there to be contradictions, but the idea of a 
contained area where you could begin at one point and cover the whole surface 
in paint, yet you could never draw the boundary destroyed all conception of 
geometry for me. That is the beauty of fractals, each person can find an interest 
in a different one of their concept breaking nature. 



 

3.2.0 Subtractive 

As our example, we will take the Sierpinski Gasket as this is easy to construct and to 
understand. 

 

 

 

 

  3.2.1 Perimeter 

Take an equilateral triangle, side length 1. The perimeter of this shape is 1+1+1=3 
units. Now remove the largest inverted equilateral triangle that will fit inside the 
original. This new shape can be split into 3 new triangles, each with side length 
1/2. The perimeter here will be 9(1/2) = 9/2. Repeat this process, 9 triangles of 
1/4 side length is 27(1/4) =27/4. 

The sequence of perimeters can be written: 

3/1, 9/2, 27/4, 81/8, 243/16 

To get from each term to the next we must multiply by 3/2. This iterative process 
where n is the iteration can be written: 
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As n tends to infinity: 
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Hence the perimeter of Sierpinski Gasket is infinite. 

 

 

 



 
  3.2.2 Area 

For this example, we will start with an equilateral triangle of area 1 square unit. 
For our second iteration we remove ¼ of the area, leaving an area of ¾ square 
units. 

The sequence of areas is: 

1,   3
4

 ,  9

16
 ,  27

64
 

The iterative formula for this sequence, where n is the iteration is: 

(
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As n approaches positive infinity: 
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As 3/4 is less than 1 the area of a true Sierpinski’s triangle is 0. 

 

  3.2.3 Dimensionality 

A Sierpinski Triangle is constructed of 3 identical triangles, each of side length 
1/2. Using the rules that we determined in 3.1.3 it can be seen that: 
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3 = 2𝑥 

log23 = 𝑥 ≈ 1.58 

Therefore, a Sierpinski triangle is 1.58 dimensional, making it closer to the 
second dimension than the Van Koch curv 

 

4.0.0 Further Exploration of Fractals 

 4.1.0 Three Dimensional? 

After explaining the features and interesting properties of these fractals that lie on a flat 
plane, the next obvious question that arises is the possibility of (conventionally) three 
dimensional fractals. Indeed, these do exist and often are expanded versions of two-
dimensional ones. 

For example, the Menger sponge is a similar concept to the Sierpinski triangle and is 
constructed by continuously taking smaller and smaller cuboid sections away from a 
starting cube shape. They share many similar properties, although transferred to the 
third dimension. For example, a perfect Menger sponge has a volume of zero, yet an 



infinite surface area, making it the perfect theoretical shape for cost effective radio 
signal receivers, or as an incredibly quickly reacting solid. 

Other three-dimensional fractals exist, both additive and subtractive. I find that the 
additive 3D fractals are mesmerising to look at and beautiful, however the utility of 
fractal research that makes it such an interesting subject is almost fully contained to the 
subtractive side. 

 

 4.2.0 Self-Similar? 

To advance any further into the applications of fractal research we must move past the 
assumption of fractals as self-similar shapes. As a base they offer a great modelling 
strategy, but fractal research goes so much further. 

Fractals are not inherently self-similar, and moving past this assumption allows us to 
explore into the natural world and apply fractals to new technology, even in a way that is 
not “true” fractal geometry. 

 

 4.3.0 Natural Exploration 

The natural world around us contains many fractals, in imperfect forms, and the 
patterns that can be found allow us to calculate and understand better the world around 
us. 

4.3.1 Shells 

Gastropod shells are the type of shells that spiral tightly and are some of the 
most fascinating animal structures out there. The shell expands from a tightly 
coiled centre to a wide-open mouth. The sequence that defines this is called the 
Fibonacci sequence (also known as the golden ratio), which looks like this: 1, 1, 
2, 3, 5, 8, 13, 21…. It is constructed by adding together the two previous 
numbers in the sequence to form the next. Despite it not being particularly 
intense mathematically, the Fibonacci sequence is one of nature’s most 
frequent fractals, appearing in shells, pinecones, and flowers.  

 

4.3.2 Ferns 

Ferns are the closest nature has to self-similar fractals. Inspecting a single leaf 
of bracken, you could see that it is constructed of many smaller copies of itself 
attached to a central stem. Each of these secondary sections are also made of 
smaller copies, if this were to be repeated infinitely, this would be a true self 
similar fractal. Unfortunately, this would be both physically impossible and 
evolutionarily impractical, so most types of ferns only have 3 to 4 iterations. 

This does beg the question though, why does this shape offer an evolutionary 
benefit? I am no biologist, but the maximised perimeter with all the gaps must 
increase water runoff from the leaves, allowing water to the ground around the 
roots far more easily than if it were a solid leaf. The best way to do this whilst 



maximising surface area of the leaf for sunlight and minimising the complexity of 
DNA is by repeating the same structure at smaller and smaller scales. Ultimately 
this shows that fractals can be the simplest solution to a problem that is 
proposed. It also challenges my initial thoughts that the only useful fractals were 
subtractive, as this is clearly more of an additive example. 

 

  4.3.3 Coastlines 

Coastlines of countries are where fractals can be used to understand the natural 
world best. When measuring a coastline, a degree of accuracy must be used. 
However, this can lead to inconsistencies. For example, If you were to measure 
the coastline of the UK with segments of 1km, the answer that you get will be 
smaller than if you were to use segments of 100m: the smaller the resolution of 
the measurement, the greater the outcome will be. This makes sense when you 
consider that, for every 1km segment you use, this is the shortest path between 
two points on the coastline. Every slight deviation from the line is a longer piece 
of coastline that has not been measured. Because of the inherent roughness of 
coastlines, this is true for every measurement that you could feasibly use. As 
there are always increasingly small sections, we can call this a fractal. No matter 
the type of fractal, the perimeter is always infinite, and therefore all coastlines 
must have infinite length. 

However, it simultaneously cannot be true that all coastlines have the same 
length - the coastline of Russia is quite obviously longer than that of Belgium – 
fractals therefore prove the concept that some infinities are larger than others to 
be true. Mathematically this was already understood before fractal theory, but 
the real-world application makes fractals undeniably mathematically useful. 

  

 

 

4.4.0 Fractals in the Modern World 

As well as being found in nature, fractals have uses that can be implemented into 
human made items, influencing sections of society from art to science. 

  4.4.1 Chemistry 

In chemical reactions a large determining factor of the rate of reaction is the 
surface area of any solids that are used. This is because the particles are more 
likely to collide and react if more surface area is in contact with other reactants. 
As we have previously established, a perfect 3-dimensional fractal has an 
infinite surface area, meaning that an approximation of it  

has a very large surface area to volume ratio. For reactions that require quick 
completion, fractals are the best shape to use for solid components. 

 



 

  4.4.2 Communication 

When receiving radio signals, receivers absorb radio waves. This signal is 
stronger if the surface area of the receiver is greater, as a higher percentage of 
the waves are absorbed and data corruption becomes less likely. Here the high 
surface area of fractals such as the Menger sponge are useful, and also saves 
money on the material costs, as the volume is very low. This shows how fractals 
can be implemented into everyday devices. 

  4.4.3 Architecture 

Fractals also have an undeniable beauty to them, particularly ones common in 
nature such as the Fibonacci sequence. As a result, artist and designers often 
intentionally or unintentionally incorporate them into designs, particularly 
architecture. Such buildings include the Centenary of the federation of 
Australian States, and many of Antoni Gaudi’s designs. 

 

5.0.0 Conclusion 

The uses of fractals perfectly sum up what they are. They are beautiful examples of geometry 
and are undeniably interesting to look at. Yet they also have incredible applications, both for 
understanding the world around us, and for new innovation in science and technology. They are 
a confusing intersection between art and science, and this is what makes this comparatively 
new field of maths one of the most interesting and potentially impactful of all. This field of 
mathematics is still wide open and I look forward to the new developments and applications 
that will inevitably keep coming in the future. 

 

 


