
Fractals – The Beauty of Mathematics

Ina S. Feder

31st March 2024

To most people, mathematics is a frustrating and abstract subject, which
is difficult to understand, with pointless, made up problems. Few would
describe mathematics as beautiful in the literal sense. However, there is a
part of mathematics where images and pattern emerges that I believe most
people would find beautiful and almost artistic, namely in fractals. Fractals
were first introduced to me by my grandfather, Jens Feder, who passed away
in 2019.

1 What is a fractal?
A fractal is a never-ending geometric pattern, it is infinitely complex and
self-similar across different scales, with detailed structure at arbitrary small
scales. In essence, it is a pattern that repeats itself, regardless of how zoomed
in, it appears similar to a whole image [2, 3].

2 The Mandelbrot set
The Mandelbrot set is an example of a fractal. The Mandelbrot set is gen-
erated by iterating a simple, discrete function, defined in Equation (1), on
points of a complex plane.

zn = z2n−1 + c (1)

Where c is a complex number and the initial value of z, is always zero, that
is z0 = 0.1

1To find the Mandelbrot set, z0 must always equal zero, so z1 = c.

1

3 Displaying the Mandelbrot set
The Mandelbrot set is defined by the iterative equation: Equation (1), that
takes a varying number of iterations to stay bounded or unbounded. The
Mandelbrot set is defined by all those points in the complex plane where zn
stay bounded for all values of n. However, by colouring the points in the
complex plane dependent on how many iterations it takes for the sequence
to be deemed to go to infinity (i.e. those points not in the Mandelbrot
set) produces an infinitely repeating, colourful, beautiful and what seems
as infinite complex patterns at all magnifications (see Figure 2 for a peek
preview).

Further, using the same iterative equation, but changing the initial vari-
able z0 across the complex plane (and keep c a constant), the same equation
produces a whole new set of fractals, known as the Julia set.

In order to visualize Equation (1), I need to explain the fundamentals of
complex numbers.

4 What are complex numbers?
Not all numbers have a square root. If you square a real number, the result
will always be a positive number, since two negatives, or two positives, mul-
tiplied together always gives a positive number. However, what if you try to
square root a negative number [5]?

For instance, how would you find the square root of -1? Since any square
number must be positive, the square root of -1 does not exist as a real number.
As a result, mathematicians defined i to be the square root of -1 and called
any multiple of i to be an imaginary number.2 Surprisingly, such imaginary
numbers work well with algebra, for instance:

√
−1 = i

i2 = −1

√
−49 = 7i√
−8 = 2i

√
2

(4i)2 = −16

2The definition i is actually the 9th character of the Greek alphabet, iota, and in
tradition of mathematical variables represented by i rather than i.

2

A “complex” number is any imaginary number with a real number, in
the form x+ y · i. While real numbers can be represented on a number line,
complex numbers are represented in a plane [6].

5 How are complex numbers represented graph-
ically?

All numbers such as reals, integers, rational and irrational numbers can be
plotted on a number line. However, a complex number consist of a real
number and an multiple of the imaginary number i, we cannot plot both
on a single number line. Instead of a number line, mathematicians utilise a
plane, the complex plane, to represent complex numbers where the horizontal
x-axis is the “real axis”, and the vertical y-axis is the “imaginary” axis as
shown in Figure 1. This is similar to a vector in a plane, and normal vector
algebra would apply. For instance, the magnitude (or size, denoted |z|) of a
complex number is defined by Equation (2), just as it is for a vector in the
x-y plane [4].

|z| =
√
x2 + y2 (2)

In Figure 1, the complex number z = 2 + 3i exists in the complex plane,
and its magnitude is

√
22 + 32 =

√
13. It is in the complex plane that the

Mandelbrot set exists as it gives interesting results when c in Equation (1)
is a complex number.

3

Figure 1: The real x-axis and the imaginary y-axis forms the complex plane.

6 How does the iteration equation work?
The Equation (1) defines the Mandelbrot set. We can use this equation to
present how the results vary over iterations. The initial starting position is
always z0 = 0 in the definition of the Mandelbrot set. Below we illustrate
the general iteration to arrive at z1 to zn.

z1 = z20 + c

z2 = z21 + c

z3 = z22 + c

z4 = z23 + c
...

zn = z2n−1 + c

If c were not a complex number, but say the real number, c = 1, the values
of the first 5 iterations would be:

4

z1 = 02 + 1 = 1

z2 = 12 + 1 = 2

z3 = 22 + 1 = 5

z4 = 52 + 1 = 26

z5 = 262 + 1 = 677

With this starting value of c = 1, as n tends to infinity, so does the result
of zn, thus 1 is not in the Mandelbrot set. An obvious result is that zn is
always 0, and thus in the Mandelbrot set, if we set c = 0:

z1 = 0 = 0

z2 = 02 + 0 = 0

z3 = 03 + 0 = 0

However, a more interesting result happens if we set c = −1:

z1 = −1

z2 = (−1)2 − 1 = 0

z3 = 01 − 1 = 1

z4 = 12 − 1 = 0

With this initial value of c, the pattern loops and repeats itself over and over,
creating a cycle which produces the results 0 and -1, this is in the Mandelbrot
set as the value of zn does not tend to infinity, but stays bounded.

However, we start getting very interesting results by setting c = −1.8:

z1 = −1.8

z2 = (−1.8)2 − 1.8 = 1.44

z3 = (1.44)2 − 1.8 = 0.2736

z4 = (0.2736)2 − 1.8 = −1.72514304

z5 = (−1.72514304)2 − 1.8 = 1.176118508

5

This shows that as n increases, the results of zn display “chaotic”3 behaviour,
that is, the zn value cannot easily be predicted without computing all the
iterations to n and calculating zn.

That is, using the iteration of Equation (1), the series of numbers either
tend to a fixed point (which could be infinity, zero or a constant), go in
a cycle, or have chaotic behaviour. The Python code 1 in the Appendix
produces the first zn values for a given c and n.

Remember that in Equation (1) c can be a complex number. That is,
c can be the sum of a real number, x, and a multiple y of i, i.e. of the
form c = x + y · i. As we have explored some examples of the iterations
of Equation (1) on the real axis, let’s explore some results when c is on the
imaginary axis, that is, where x = 0 and y 6= 0. For instance, c = i, how
does the Mandelbrot Equation (1) evolve?

z1 = i

z2 = i2 + i = −1 + i

z3 = (−1 + i)2 + i = −i

z4 = (−i)2 + i = −1 + i

z5 = (−1 + i)2 + i = −i

This, as in the example above using c = −1, which goes in an endless loop
of cycles of 2 numbers, thus i is in the Mandelbrot set. If c = −i:

z1 = −i

z2 = (−i)2 − i = −1− i

z3 = (−1− i)2 − i = i

z4 = i2 − 1 = −1− i

z5 = (−1− i)2 − i = i

This pattern also goes in pattern cycles of 2 and zn does not escape to infinity,
so c = −i is in the Mandelbrot set. For instance, if c = 2i:

z1 = 2i

z2 = (2i)2 + 2i = −4 + 2i

z3 = (−4 + 2i)2 + 2i = 12− 14i

z4 = (12− 14i)2 + 2i = −52− 334i

3Chaotic behaviour is when a sequence produces apparently random and unpredictable
results, in a system of deterministic equations.

6

In this pattern, the value of zn will continue to increase as n increases, and
thus c = 2i is not in the Mandelbrot set. The code 2 in the Appendix is
python code for testing different multiples of i, and the resulting zn. [1]

7 The Mandelbrot set, visualised
In order to create beautiful visualisation of the Mandelbrot set and its suround-
ings, a point c on the complex plane is chosen (and z0 = 0) and Equation (1)
is iterated a finite number of times (maximum iterations). If during the iter-
ation the magnitude of zn (that is, |zn| of Equation (2)) at any point exceeds
the maximum number of iteration provided, zn is deemed to tend to infinity
and the point c is given a colour dependent on the number of iterations re-
quired to deem zn as tending to infinity. If this condition is not met, zn is
deemed to be bounded and part of the Mandelbrot set and usually coloured
black.

For example, iterating Equation (1) using c = −1.9 + i, and allowing for
a maximum of 15 iterations, that is, nmax = 15, we find that it only takes
3 iterations before |z3| = 21.1 > 15, thus we would give the point (−1.9, i)
on the complex plane a colour (say blue) signifying it only took 3 iterations
before this value of c for Equation (1) tended to infinity. We then repeat the
same process for different values of c. Note that we deem that when |zn| is
greater than the maximum iterations provided, |zn| would go to infinity, and
if this is not the case, we deem that |zn| is bounded. This is done as it would
be too time consuming to calculate |z∞| to determine if it is infinite or if it
is bounded.4 Further, different details can emerge dependent on the allowed
maximum number of iterations.

For values of c where zn displays chaotic behvaiour, the number of it-
erations before |zn| can be deemed to infinity or remain bounded can seem
random. One might assume that the colour result would be “random”, but
if you look at the images produced, it cannot simply be a random series of
iterations for such an intricate pattern to occur.

To summarise, in order to visualise the Mandelbrot set and its surround-
ings, you iterate over all values of c of the Mandelbrot set and its suroundings
and colour code the coordinate c depending on the number of iterations it
took to deem zn to be bounded (black) or deemed to be unbounded (tends
to infinity).

4Although for some points it can be proven that |z∞| is bounded or not using algebra,
many points cannot due to the chaotic behaviour for Equation (1) of many interesting
values for c.

7

8 Implementation of the Mandelbrot set
In the Appendix, I wrote a small Python code 3 that can be used to gen-
erate an image of the Mandelbrot set. The function draw_mandelbrot_set
draws the Mandelbrot set, given a set of input parameters. The first two
arguments of this function define the real axis boundary, that is, x_min,
x_max and the imaginary boundaries, y_min, y_max. The size (number of
points) on the real axis is defined by the 5th argument, width. The resolu-
tion of the resulting image can be set by the max_iterations that sets the
maximum n iterations to compute before determining that the point c is in
the Mandelbrot set as |zn| <max_iterations or deemed to go to infinity as
|zn| >max_iterations.

The Mandelbrot set exists on the complex plane bounded by approxi-
mately -2.01 and 0.7 (x ∈ [−2.01, 0.7]) on the real axis and -1.14i and 1.14i
(y ∈ [−1.14, 1.14]) on the imaginary axis. Thus, to generate the Mandelbrot
set with those boundaries and a width of 5,000 points (pixels) and maximum
iterations of 90, the following call using code 3 is used:

draw_mandelbrot_set(−2.01, .7,−1.14, 1.14, 5000, 90)

Running the code will draw the Mandelbrot set and is shown in Figure 2.
By using different input values and zooming into (making the boundaries
smaller) interesting parts on the boundary of the Mandelbrot set, beautiful
images and fascinating patterns can be found.

8

Figure 2: The Mandelbrot Set. x ∈ [−2.01, 0.7], y ∈ [−1.14, 1.14], width =
5000, max iterations = 90.

9 How does the colouring work?
The code 3 uses an “HSV” colouring system to colour the Mandelbrot set.
HSV stands for Hue, Saturation, Value. It is traversed linearly through this,
and the three linear paths it follows are hue of colour 0 to colour 1, and from
saturation 0 to saturation 1. So if you look in the code on line 9,

color = 255 * array(colorsys.hsv-to-rgb(n/255.0, 1.0, 0.5))

if you edit the first number, 225, you change the hue, and if you edit the
second number, 1.0, you change the saturation, and if you edit the last one,
0.5, you change the colour.

9

10 A journey exploring the Mandelbrot set
An interesting point to use as the centre for magnifiying the Mandelbrot
set is centered at x = −0.7436438891276436, y = 0.13182590455455057. To
start the journey through the Mandelbrot set, I start with a distance from
the centre in the x (real) and y (imaginary) axis of r = 8.1041015625. I then
keep the width at 1,500 pixels and then start reducing the distance r by a
factor of 10 repeatedly, that is, we do a 100 times magnification each time of
the image. The code to create this journey is proviced in code 4.

The Figures 3, 4 and 5 follows this journey of magnifying the original
image by a factor all the way to 1024. Along this journey are some mes-
merising images and patterns. My favourite one is in the bottom left of
Figure 4 where we can see a whole new Mandelbrot set, thus illustrating the
self-similar structure of this fractal. Note that in the two first images I set
max_iterations to 80, while in the others I used 2000. When using 80 for
the higher magnifications, one would often create too much black as the code
incorrectly assumes the point is in the Mandelbrot set when it is not.

Figure 3: Left: The starting Mandelbrot set. Right: The left image has been
magnified by a factor of 102 at its centre. The max_iterations used here is
80.

10

Figure 4: Magnification of 104 to 1016, using max_iterations = 2000, mov-
ing from top left to bottom right. 11

Figure 5: Magnification of 1016 to 1024, using max_iterations = 2000, mov-
ing from top left, to bottom right.

12

11 Other areas to explore
It is interesting and fun to play with the Mandelbrot code to generate other
images, which can be done in multiple ways, such as varying the power of
zn−1. For instance, on line 21 of code 3, changing the equation to z = z
** 4 + c. This variation is interesting as it creates similar but what seems
to be repeated interconnected Mandelbrot sets. For other powers which are
less than 1, no image is produced. However, whether the resulting images
produced when the power of zn−1 6= 2 are fractals would need further inves-
tigation. The resulting image of modifying the equation to zn = z4n + c is
shown in Figure 6.

Another way to experiment with code 3 is to input the code 5, which
creates the Julia set instead of the Mandelbrot set. A Julia set is remarkably
also generated from Equation (1), but the subtle change is that the value
of z0 changes and is mapped across the complex plane, while c remains a
constant. This simple small change in the implementation creates a whole
new set of beautiful, fascinating fractals! As one changes the value of c, the
set expands and creates a different pattern. An example of the Julia set is
produced using this code (i.e. when c = −0.4+0.6i) and is shown in Figure 7.

13

Figure 6: This is the Mandelbrot set when zn−1 is raised to the power
of 4. It uses the calling function draw_mandelbrot_set(-2.01,.7,-
1.14,1.14,5000,90).

Figure 7: This is the Julia set, called by the function
draw_mandelbrot_set(-2.01,2,-1.14,1.14,1000,90) modified by
code 5.

12 Reflections on the Mandelbrot set
What is it that makes the Mandelbrot set so special? Such a simple code,
and only one equation, and infinite complexity - that’s so cool!

One way of thinking about the Mandelbrot set is to compare it to the
universe and nature. Although these and the Mandelbrot set are not equiv-
alents, it is interesting to compare them if you assume that they are. The

14

universe has infinite complexity, and is insanely large and full of beautiful
patterns from galaxies and stars to crystals and lattice structures. My grand-
father5 once said that you could fit all the fundamental known laws of physics
equations on a single piece of paper. This is similar to Mandelbrot’s equation
– a simple equation, producing all of these complex, beautiful results.

This might also gives us an understanding of why it might be so hard to
discover the laws of nature. If you saw the images presented here, could you
derive Equation (1)? All this infinite complexity in our surroundings, and
likely just a few equations that explain the entire universe!

Another way of looking at it is how the Mandelbrot set puts the universe’s
size into perspective. If the universe is encapsulated in the Mandelbrot set,
where the area of the Mandelbrot set is equal to 4.4 × 1026m2, which is the
length of the universe (4.4 × 1026m), you can look at the value of 1m2 in
the Mandelbrot set to see the difference as shown in Figure 8. Even at this
magnification, we see there continues to be intricate patterns that could be
dived into even further 6

5Jens Feder was a professor in physics at the University of Oslo, Norway.
6Note that we are magnifying the area of a part of the souroundings of the Mandelbrot

set by the length of the universe in metres. The more relevant comparison would be area
with area, however, when running the code with such magnificaton introduces numerical
noise that as a result does not generate a clear image.

15

Figure 8: The magnification centered at the point in Section 10 by the ratio
of 1m to the length of the known univirse.

13 Conclusion
I hope you would agree with me that there are parts of mathematics that
creates literally beautiful and even artisitc images and patterns, as I have
shown in this essay.

I think what makes the Mandelbrot set so special and beautiful is the fact
that something as banally simple as Equation (1) creates infinite complexi-
ties. Zooming into the suroundings of the Mandelbrot set, as I did in Section
10, the pattern would infinitely expand to give new, self-similar complex pat-
terns. It creates this artistic variation depending on the number of iterations,
and shows that art encapsulates math. It is also a very interesting way to
show how maths does not need to be incredibly complicated to be fun, and
to have beauty in it. It’s often assumed you need to have studied maths to a
high level to understand it’s beauty and complexity, but the Mandelbrot set
disproves this and highlights that with just some simple maths and computer
code, beauty emerges.

Appendix: Python code
I used Python to implement the figures in this essay. Python is a free pro-
gramming language that can be donwloaded from https://www.python.org/.
I used Python version 3.11.5, but I believe it would run on most verison of
Python. I used the pillow package and the numpy package which can be
installed by typing pip install pillow and pip install numpy on the
command prompt after installing Python.

16

1 def sequence(c,n):
2 #equation = Z(n) = Z(n-1)^2 + c
3 print("Z(0) = 0")
4 z = 0
5 for i in range(1,n+1):
6 z = z*z + c
7 print(f"z({i}) = {z}")

8 c = float(input("Value of c: "))
9 n = int(input("Number of loops (value n): "))
10 sequence(c,n)

Python code 1: Iteration of Equation (1) using real values of c only.

1 def sequence(c,n):
2 #equation = Z(n) = Z(n-1) + c
3 print("Z(0) = 0")
4 z_original = 0
5 for i in range(1,n+1):
6 z = z*z+ c*1j # in python, the imaginary number i is \

+ ↪→ denoted by the letter jj (as i is often used for \
+ ↪→ counting)
7 print(f"z({i}) = {z}")

8 c = float(input("Value of c, as a multiple of imaginary number
i: "))

9 n = int(input("Number of loops (value n): "))
10 sequence(c,n)

Python code 2: Iteration series with imaginary numbers

1 # Python code for Mandelbrot Fractal
2 # Import necessary libraries
3 from PIL import Image
4 from numpy import array
5 import colorsys
6 from datetime import datetime
7 def rgb_conv(n):
8 ''' Color the pixel dependent on how many iterations n it \

+ ↪→ took for the mandelbrot iteration to '''
9 color = 255 * array(colorsys.hsv_to_rgb(n/255.0, 1.0, 0.5))
10 return tuple(color.astype(int))

17

11 def mandelbrot(x: float, i:float, max_iterations: int)->tuple:
12 '''Perform the mandelbrot iteration. If the absolute \
+ ↪→ value of z > max_iterations, the z is assumed to go to \
+ ↪→ infininte. We then color that point (pixel) dependent \
+ ↪→ on how many iterations it took to get the absolute \
+ ↪→ value of z > max_iterations
13 x : the x-coordinate on the real axis
14 i : the y-coordinate on the imaginary axis
15 max_iterations : the number of iterations to perform to \
+ ↪→ check for |z|> max_iterations, if not then color it \
+ ↪→ black (i.e. black are points in the Mandelbrot set).'''
16 c = x+1j*i
17 z = 0
18 for i in range(1, max_iterations):
19 if abs(z) > max_iterations:
20 return rgb_conv(i)
21 z = z ** 2 + c
22 return (0, 0, 0)

23 def draw_mandelbrot_set(x_min:float, x_max:float, \
+ ↪→ y_min:float, y_max:float, width:int, \
+ ↪→ max_iterations,file_name='mandelbrot.png'):
24 '''Draw the result of the mandelbrot iteration beteen the \
+ ↪→ coordinates with a width and height'''

25 # We calculate the height from the width so that the step \
+ ↪→ size is esentially the same along the real and \
+ ↪→ imaginary axis so that the set does not look streatched.
26 x_step = (x_max-x_min)/width
27 height = int((y_max-y_min)/x_step)
28 y_step = (y_max-y_min)/height

29 # Allocate image size
30 img = Image.new('RGB', (width, height))
31 pixels = img.load()

32 for x in range(width):
33 # displaying the progress as percentage
34 if round(x/width * 100, 2) % 1 == 0:
35 print("%.1f %%" % (x / width * 100.0))
36 for y in range(height):
37 pixels[x, y] = mandelbrot(x_min+x*x_step,y_min+ \
+ ↪→ y*y_step,max_iterations)

18

38 img.show()
39 img.save(file_name)

40 #draw the result at different interesting areas of the \
+ ↪→ complex plane
41 draw_mandelbrot_set(-2.0,1,-1,1,1000,255)

Python code 3: Code to color the complex plane depending on the resulting
number of iterations to determine if the point is withing the Mandelbrot set
(black) or is expected to escape to infinity.

1 x= -0.7436438891276436
2 y = 0.13182590455455057
3 R = 8.1041015625
4 for i in range(0,14):
5 scale = 10**i
6 r=R / scale
7 file = f"mandelbrot_x{scale}.png"
8 draw_mandelbrot_set(x-r,x+r,y-r,y+r,1500,2000,file)

Python code 4: Create the plots for a journey through the Mandelbrot set
using the centre (x, y · i) and a width of about 8 and magnify 100 times each
step to a final magnification of 1026. Use max interations of 80 instead of
2,000 for the smaller values of i.

1 z = c
2 c = -0.4 + 0.6j # Using different start points gives different \

+ ↪→ Julia sets.
Python code 5: Julia set can easily be generated using code 3 by inserting
the lines above between line 17 and 18 in code 3.

References
[1] Robert Devaney. What is the mandelbrot set? URL https://plus.

maths.org/content/what-mandelbrot-set.

[2] Jens Feder. FRACTALS. Plenum-Press, 1988.

[3] Fractal Foundation. What are fractals. URL https:
//fractalfoundation.org/resources/what-are-fractals/.

19

[4] House of Math. The complex plane. URL
https://www.houseofmath.com/encyclopedia/
numbers-and-quantities/numbers/complex-numbers/
introduction/what-does-the-complex-plane-mean.

[5] Jed Skilling. The undeserved mystery of complex num-
bers. URL https://tomrocksmaths.com/2023/08/10/
teddy-rocks-maths-essay-competition-2023-student-winner/.

[6] Wikipedia. Complex numbers - wikipedia, March 2024. URL https:
//en.wikipedia.org/wiki/Complex_number#Further_reading.

20

	What is a fractal?
	The Mandelbrot set
	Displaying the Mandelbrot set
	What are complex numbers?
	How are complex numbers represented graphically?
	How does the iteration equation work?
	The Mandelbrot set, visualised
	Implementation of the Mandelbrot set
	How does the colouring work?
	A journey exploring the Mandelbrot set
	Other areas to explore
	Reflections on the Mandelbrot set
	Conclusion

