
Durukan Demir

How Does Shazam Work?

Introduction
One of the mind-blowing pieces of technology was the app Shazam for me. If you’re not

familiar with it, it’s a very compact mobile application, that when used listens to a song for at
maximum 20 seconds, and then finds you the name of the song. Today, with the rise of AI, many
people wouldn’t be shocked to have such an application. However, let me tell you this, Shazam
was created in 2002 and doesn’t use machine learning at all. Learning how it worked truly
amazed me as it used clear but still intricate mathematical tools, to create such an accurate and
precise product. In this essay, we will dive deep into the field of signal processing, and when
we’re prepared, we will connect it back to Shazam. So let’s try to tackle how we can recognize a
song, just by listening a few seconds of it.

Fourier Series

Sound is just waves of pressure moving in the air, so in theory, we can easily record the
incoming sound, graph it, and check if the created graph matches with a preexisting graph i.e. a
preexisting song. Right? Not really, because if you have a look at the graph for a real-world
recording you’ll quickly see that it’s much more chaotic than what we imagine. Thus, the vague
term “matching” works no more. So we must come up with a better method to identify different
audio recordings.

Graph 1: Audio Recording of “It’s a Man’s Man’s Man’s World”

To do this, let’s understand that in the real world, different sounds get combined and
mixed, and our ears hear them all at the same time. So in this messy graph, it’s just the multiple
mixed waves, that make it challenging to identify some patterns. Hence, we must filter different
layers of these waves to create some sort of I.D. tag for our recording.

Let’s recall that every sinusoidal wave can be identified by three parameters: its
frequency, amplitude and phase. In a mathematical formulation, this would be

where A is the amplitude, is its frequency and is its𝑓(𝑥) = 𝐴 * 𝑠𝑖𝑛(ω * 2π * 𝑥 − ℎ) ω ℎ
horizontal shift i.e. the wave’s phase. Our goal is to construct any given perodic function by
using these sinusoidal waves. As a simpler example to work with, imagine that you receive the
graph in Graph 2. I can tell you that it’s the graph of

. However, how could we find the different sine and𝑓(𝑥) = 𝑠𝑖𝑛(2 * 2π * 𝑥) + 𝑠𝑖𝑛(3 * 2π * 𝑥)
cosine functions, and their amplitudes if we’re just given the function?

Durukan Demir

Graph 2: graph of 𝑓(𝑥) = 𝑠𝑖𝑛(2 * 2π * 𝑥) + 𝑠𝑖𝑛(3 * 2π * 𝑥)

One tricky method we’ll use is the observation that the integral of sinusoidal waves equals zero,

, because the positive sides cancel out the negative sides. However,
−𝑃

+𝑃

∫ 𝑠𝑖𝑛(𝑥)𝑑𝑥 = 0

as always . However, when the frequencies of two waves that are
−𝑃

+𝑃

∫ 𝑠𝑖𝑛(𝑥)2𝑑𝑥 > 0 𝑠𝑖𝑛(𝑥)2 ≥ 0

multiplied and then integrated, don’t equal, they cancel each other out too. Thus,

where B and C are non-negative integers and . The proof
−∞

+∞

∫ 𝑠𝑖𝑛(𝐵𝑥) * 𝑠𝑖𝑛(𝐶𝑥)𝑑𝑥 = 0 𝐵 ≠ 𝐶

can be made by integrating the function, however, an intuition can be gained just by looking at
their graphs.

Graph 3: sin(2x) and sin(4x) in the interval [- ,]π π

In graph 3, the blue line is , the green line is and red lines separate every interval𝑠𝑖𝑛(2𝑥) 𝑠𝑖𝑛(4𝑥)
of length . Notice how although the green line is the same between every red line, blue line’sπ/2
sign changes. Thus, when taking the integral, they cancel each other out. Thus, we can
determine if a function f(x) contains a frequency , by checking whetherω

equals 0 or not. As a note, this integral might equal to zero if the
−∞

∞

∫ 𝑓(𝑥) * 𝑠𝑖𝑛(ω * 2π * 𝑥)

phase of the wave in with frequency , doesn’t match the phase of the sine wave at all,𝑓(𝑥) ω
however, we’ll discuss it later in this paper. Thus, we must check the same thing with cosine as
well.

Now, we can determine if a certain frequency is present in a periodic function or not. There are
two more parameters, amplitude and phase, of the waves that make that function. To talk more
formally, let’s define as a periodic function with a wavelength of . Then,𝑓(𝑥): 𝑅 → 𝑅 2𝐿

Durukan Demir

where𝑓(𝑥) = 𝐶 +
1

∞

∑ 𝐴
𝑛
𝑠𝑖𝑛(𝑛π𝑥/𝐿) +

1

∞

∑ 𝐵
𝑛
𝑐𝑜𝑠(𝑛π𝑥/𝐿)

,𝐶 = 1/2𝐿 *
−𝐿

𝐿

∫ 𝑓(𝑥)𝑑𝑥

𝐴
𝑛

= 1/𝐿 *
−𝐿

𝐿

∫ 𝑓(𝑥) * 𝑠𝑖𝑛(𝑛π𝑥/𝐿) 𝑑𝑥

𝐵
𝑛

= 1/𝐿 *
−𝐿

𝐿

∫ 𝑓(𝑥) * 𝑐𝑜𝑠(𝑛π𝑥/𝐿) 𝑑𝑥

Wow, there’s just too much to unpack here. As an initial warning, the calculations will be very
messy, so I would suggest to not worry much if you can’t follow them completely, as long as you
manage to build the intuition.

Firstly, let’s see that and are just the sine and cosine waves with𝑠𝑖𝑛(𝑛π𝑥/𝐿) 𝑐𝑜𝑠(𝑛π𝑥/𝐿)
a period . So the waves repeat n times in the interval . Furthermore, C can be2𝐿/𝑛 [− 𝐿, 𝐿]
thought as the mean or the mid line of the function (it’s literally taking the average of the function
in the interval). Now, let’s focus on . As explored priorly, if the wave with frequency n[− 𝐿, 𝐿] 𝐴

𝑛

isn’t present in , then the integral will equal to 0. Thus, actually𝐴
𝑛

where k is the phase of the wave with the𝐴
𝑛

= 1/𝐿 *
−𝐿

𝐿

∫ 𝐴 * 𝑠𝑖𝑛(𝑛π𝑥/𝐿 − 𝑘) * 𝑠𝑖𝑛(𝑛π𝑥/𝐿) 𝑑𝑥

desired frequency (assuming it’s present) and A is its amplitude. When the integral is computed,
it equals to
𝐴/4𝐿 * ((𝐿𝑠𝑖𝑛(𝑘 − 2π𝑛))/(π𝑛) + 2𝐿 * 𝑐𝑜𝑠(𝑘)) − 𝐴/4𝐿 * ((𝐿𝑠𝑖𝑛(𝑘 − 2π𝑛))/(π𝑛) − 2𝐿 * 𝑐𝑜𝑠(𝑘))
=𝐴/4𝐿 * 4𝐿𝑐𝑜𝑠(𝑘) = 𝐴𝑐𝑜𝑠(𝑘)

If the same is done for ,𝐵
𝑛

𝐵
𝑛

= 𝐴/4𝐿 * (− 2𝐿 * 𝑠𝑖𝑛(𝑘) − 𝑐𝑜𝑠(𝑘 − 2π𝑛)) − 𝐴/4𝐿 * (2𝐿 * 𝑠𝑖𝑛(𝑘) − 𝑐𝑜𝑠(𝑘 + 2π𝑛))

=− 𝐴/4𝐿 * 4𝐿𝑠𝑖𝑛(𝑘) =− 𝐴 * 𝑠𝑖𝑛(𝑘)

So combining these two, if a wave with frequency is present, then a term of𝑛/2𝐿
𝐴

𝑛
𝑠𝑖𝑛(𝑛π𝑥/𝐿) + 𝐵

𝑛
𝑐𝑜𝑠(𝑛π𝑥/𝐿) = 𝐴 * 𝑐𝑜𝑠(𝑘) * 𝑠𝑖𝑛(𝑛π𝑥/𝐿) − 𝐴 * 𝑠𝑖𝑛(𝑘) * 𝑐𝑜𝑠(𝑛π𝑥/𝐿) = 𝐴 * 𝑠𝑖𝑛(𝑛π𝑥/𝐿 − 𝑘)

weill be added, due to the sum of angles in the sine formula. Notice how finding and is the𝐴
𝑛

𝐵
𝑛

same procedure but for sine and cosine. Thus, it’s as if finding the phase is determining how
much sine and how much cosine is in a way.
In conclusion, with this formula, we’ve managed to separate all the waves that constituted the
initial wave, find their respective amplitudes and phases. And congratulations, you’ve just
learned Fourier Series.

Fourier Transform

Durukan Demir

Ok, we’ve managed to separate a wave into its constituent waves and it’s much simpler to
describe an audio recording. However, we have a few problems. Firstly, although we have a
method, we don’t have a function to determine how much a frequency is present in a function.
Secondly, our calculations were based on a given function, nonetheless, an audio recording
won’t give any function to analyze but rather just data points.

First, let’s go over the first problem. What we want is a transformation that takes function 𝑓(𝑥)
and makes it , where gives a value depending on whether the frequency is present𝐹(ω) 𝐹(ω) ω
in the function or not. This can be done with Fourier transform

So, let me introduce you to: 𝐹(ω) =
−∞

∞

∫ 𝑓(𝑥)𝑒−2πω𝑥𝑖𝑑𝑥

Wow, once again, there’s much to unpack here. Firstly, don’t let scare you, because with𝑒−2πω𝑥𝑖

Euler’s formula , this is just .𝑒𝑖𝑥 = 𝑠𝑖𝑛(𝑥)𝑖 + 𝑐𝑜𝑠(𝑥) 𝑒−2πω𝑥𝑖 = 𝑐𝑜𝑠(2πω𝑥) − 𝑠𝑖𝑛(2πω𝑥)𝑖
But why are there even complex numbers in the first place? They’re there just for convenience.
Remember how we talked about determining how much sine and how much cosine there’s in a
function? There, we had to store the values in two different coefficients and . Instead of𝐴

𝑛
𝐵

𝑛

doing this, we’ll store them in a single number where the number’s imaginary part is how much
sine there’s, and its real part is how much cosine there’s.
Thus, the equation is actually pretty simple

𝐹(ω) =
−∞

∞

∫ 𝑓(𝑥)𝑒−2πω𝑥𝑖𝑑𝑥 =
−∞

∞

∫ 𝑓(𝑥) * 𝑐𝑜𝑠(2πω𝑥) 𝑑𝑥 − 𝑖
−∞

∞

∫ 𝑓(𝑥) * 𝑠𝑖𝑛(2πω𝑥) 𝑑𝑥

From the intuitions we’ve gained previously, we know that if frequency is not present in ,ω 𝑓(𝑥)
then the integrals will equal zero, otherwise, because now the limits of our integrals are
infinities, for periodic functions, the function will explode in those values.

Yet, we still haven’t covered how to make this formula discrete, so let’s do it now with discrete
Fourier Transform.
First, we must get a few recording values which are evenly spaced.
Suppose that our audio recording looks like , and we get N=8 samples, with an𝑠𝑖𝑛(𝑥 * 2π)
interval of 1/8.

Durukan Demir

Graph 4: Example Audio Recording’s Graph

Here, let’s store the values in a vector y, and let vector Y be the vector where gives the𝑌
𝑘

amplitude of a frequency k.

Then 𝑌
𝑘

=
𝑛=0

𝑁−1

∑ 𝑥
𝑛

* 𝑒−2π𝑖(𝑘/𝑁)*𝑛

Here, compared to the original Fourier transform, we have instead of , and n instead of x.𝑘/𝑁 ω
If we compute the values for , since k=0 this is just the sum of the terms, thus it equals to 0.𝑌

0

For , thanks to the Euler’s formula, we have𝑌
1

𝑌
1

=
𝑛=0

7

∑ 𝑥
𝑛
𝑐𝑜𝑠(2π * 1/8 * 𝑛) − 𝑖

𝑛=0

7

∑ 𝑥
𝑛
𝑠𝑖𝑛(2π * 1/8 * 𝑛) =− 4𝑖

This is logical as this is a sine function and there’s no cosine in it, thus the real part is 0.
Furthermore, represents the value for the frequency of 1, and our sine function has a𝑌

1

frequency 1. Then, we can just note the magnitude of this value as 4.

If we compute for all where , only and will have a magnitude of 4, and the𝑌
𝑛

0 ≤ 𝑛 ≤ 7 𝑌
1

𝑌
7

rest will equal 0.

Durukan Demir

Graph 5: values for the Discrete Fourier Transform of𝑌 𝑠𝑖𝑛(𝑥 * 2π)

Having a non-negative magnitude at is what we expected, however, why does have one𝑌
1

𝑌
7

as well?
This is due to the Nyquist Limit, which is . In our case, the maximum𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/2
sampling frequency was 8, so any value above 4 is going to be mirrored.
Understanding why this happens is simple, as

𝑛=0

𝑁−1

∑ 𝑥
𝑛
𝑠𝑖𝑛(2π * (𝑁 − 𝑘)/𝑁 * 𝑛) =

𝑛=0

𝑁−1

∑ 𝑥
𝑛
𝑠𝑖𝑛(2π * 𝑛 − 2π * 𝑘/𝑁 * 𝑛) =−

𝑛=0

𝑁−1

∑ 𝑥
𝑛
𝑠𝑖𝑛(2π * 𝑘/𝑁 * 𝑛)

and for cosine,

.
𝑛=0

𝑁−1

∑ 𝑥
𝑛
𝑐𝑜𝑠(2π * (𝑁 − 𝑘)/𝑁 * 𝑛) =

𝑛=0

𝑁−1

∑ 𝑥
𝑛
𝑐𝑜𝑠(2π * 𝑘/𝑁 * 𝑛)

So the values is the complex conjugate of . Since only the sign of the imaginary part𝑌
𝑁−𝑘

𝑌
𝑘

coming from the sine value changes, the magnitude stays the same. Hence, we get rid of all the
values at frequencies bigger than 4. Thus, if we want to measure signals with a maximum
frequency n, then we must sample at least at 2n frequency.

Furthermore, since we’ve summed up all the values, we must divide by the number of left
frequencies (which is 4 in this case) to normalize the amplitudes.

Graph 6: Final amplitudes of the frequencies.

Durukan Demir

Finally, we’ve managed to find the frequencies in this signal, and there’s a wave with frequency
1 and amplitude 1. And congratulations once again, you’ve just learned discrete Fourier
transform.

Actually, what Shazam uses is the Fast Fourier Transform, which is a family of algorithms that
are faster versions of discrete Fourier transform and are crucial for real life applications.
However, for the sake of brevity, I’ll only encourage the reader to research it.

Applying our knowledge to a song

We’ve just covered Fourier series, Fourier Transform and Discrete Fourier Transform in a single
paper. Wow. You might have lost track of the algebra at some point, but don’t worry, as long as
the key idea is there, you’re good to go.
Fourier Series finds the coefficients for sine and cosine functions with different frequencies to
sum and create the original function.
Fourier Transform creates a function which determines if a certain frequency is present in
another function.
Discrete Fourier transform does what Fourier transform does on continuous functions, but with
discrete data inputs. Furthermore, it helps to record the magnitudes of frequencies in a signal.

Now that we’ve learned to identify the components of a function, let’s apply these to an audio
recording, just by changing the context.

Here’s an excerpt from the audio recording of James Brown’s “It’s a Man’s Man’s Man’s World”
plotted by Matplotlib in Python:

Graph 7: Voice Recording Graph of an Excerpt from “It’s a Man’s Man’s Man’s World”

Then, if we apply discrete Fourier transform to the song, it looks something like this:

Durukan Demir

Graph 8: Frequency Graph of an Excerpt from “It’s a Man’s Man’s Man’s World”

Here, the peaks signal us that the excerpt contains sound waves with that certain frequency.
You can see that the graph is skewed to the right too much, as there are much more possible
large frequencies than there can be in the song, whereas there are only a limited number of
small integer frequencies.

Spectrogram, Fingerprinting and Matching

Now that we can find the frequencies for a time interval in an audio recording, we can do this for
the whole song. This will involve applying Fourier transform to very small time intervals, and
noting the magnitudes of different frequencies with the time as well. After doing it, we can
convert our data into a spectrogram where the horizontal axis is time, the vertical axis is a
frequency value and the intensity of color in a coordinate is the magnitude of a certain frequency
at that time instance.

Here is the spectrogram for the whole song “It’s a Man’s Man’s Man’s World” by James Brown

Durukan Demir

Spectrogram 1

Storing all of this data would be costly, so instead we’ll just store values called peaks. Peaks are
local maxima in this spectrogram. Since there’s too much fluctuation in the data, instead of
recording every local maximum, we will record values which are the maximum in a certain size
area. By doing it and getting rid of every other information, we produce a graph named
“constellation map”, which was introduced by one of the founders of Shazam, Avery Li-Chun
Wang, in his paper explaining Shazam’s algorithm.

Figure 1: Constellation Map

Here, every point on the constellation map represents a peak in the audio recording. From the
constellation map, “anchor points” will be chosen and a “combinatorial hash” will be applied.
Although the general idea is present in Wang’s paper, specific details such as the algorithm to

https://www.ee.columbia.edu/~dpwe/papers/Wang03-shazam.pdf

Durukan Demir

choose the anchor points or how the “target zone” is determined are not present. However, I still
can provide a general description of the rest of the algorithm.

Figure 2: Anchor Point and Its Target Zone

Here, some of the points are chosen as “anchor points”, which are designated with a red circle
in Figure 2. Then, a zone is chosen as the “target zone”, designated with a red rectangle in
Figure 2. After this, the anchor point is paired with all of the points in the target zone and the
values, frequency of the anchor point, frequency of the point in the target zone, and the
difference of time between the two points are recorded in a vector.
After repeating this procedure a few times, we hash these values.
What’s even hashing? Hashing is the simple procedure of taking a set of values, defining and
applying a function to them, and then recording the value. The key idea here is that the defined
function should give values that seems completely random, and the chance of two different
initial values having the same hash value should be really small.

For instance, a polynomial can be chosen as the hash function, such as

where x and y are the frequencies and z is𝑃(𝑥, 𝑦, 𝑧,) = 𝑥 * 2123321 + 𝑦 * 3141356 + 𝑧 * 5152342

the difference in time, and the value could be the value of the polynomial in mod .1000000007
What are all these absurd values? The point is to make them really large and absurd, so that
chance of collision is pretty low. Moreover, the hash function should always be the same, so that
the same input always gives the same output. However, I must note that this isn’t the hash
function that Shazam uses and is just an example.

Then, when such a hash function is chosen, all the aforementioned triplets are hashed and then
combined to create a fingerprint for an excerpt of the song. Then, these values are recorded for
many excerpts of millions of songs, then recorded in a database.

Durukan Demir

When the user uses Shazam, a new fingerprint is created for the audio recording and a song
that has the same fingerprint is searched and then matched. Since similar songs, covers etc.
might have the same fingerprint, in case of multiple matches, the audio recording is compared
with the song excerpt to find the song with the highest match.

Conclusion:
And that’s how Shazam could identify a song by listening for a few seconds, in 2002

without AI. To be honest, there was much more that I wanted to cover, especially in the final
section as I tried to be quick in explaining some algorithms. I hope that this paper was a sneaky
way to introduce you to Fourier Transforms and signal processing, topped with a load of clever
algorithms.

Durukan Demir

Works Cited

The Discrete Fourier Transform (DFT). Directed by Steve Brunton, 2020. YouTube,

www.youtube.com/watch?v=nl9TZanwbBk. Accessed 1 Apr. 2024.

Discrete Fourier Transform - Simple Step by Step. Produced by Simon Xu. Youtube,

www.thefouriertransform.com/. Accessed 1 Apr. 2024.

"Fourier Series." Wolfram Mathworld, mathworld.wolfram.com/FourierSeries.html. Accessed 1

Apr. 2024.

"Fourier Transforms." MathWorks,

www.mathworks.com/help/matlab/math/fourier-transforms.html. Accessed 1 Apr. 2024.

"An Industrial-Strength Audio Search Algorithm." Columbia University Electrical Engineering.

Columbia University Electrical Engineering,

www.ee.columbia.edu/~dpwe/papers/Wang03-shazam.pdf. Accessed 1 Apr. 2024.

"Introduction to Fourier Transform." The Fourier Transform, www.thefouriertransform.com/.

Accessed 1 Apr. 2024.

James Brown - It's a Man's Man's Man's World. Directed by JamesBrownVevo, 2012. YouTube,

www.youtube.com/watch?v=H77fRz1rybs. Accessed 1 Apr. 2024.

Jovanovic, Jovan. "How does Shazam work? Music Recognition Algorithms, Fingerprinting, and

Processing." Toptal,

www.toptal.com/algorithms/shazam-it-music-processing-fingerprinting-and-recognition#:

~:text=One%20of%20the%20most%20popular,song%20you%20are%20listening%20to.

Accessed 1 Apr. 2024.

Durukan Demir

MacLeod, Cameron. "abracadabra: How does Shazam work?" Cameron MacLeod, Feb. 2022,

www.cameronmacleod.com/blog/how-does-shazam-work#why-is-song-recognition-hard-

anyway. Accessed 1 Apr. 2024.

