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Introduction 
Neural networks are a type of modelling used in Artiϐicial Intelligence and Machine Learning – 
mostly used in deep learning – and this speciϐically refers to the use of artiϐicial neural networks 
with multiple hidden layers, the meaning of which will be clariϐied later in this essay. 

Machine learning is the concept of algorithms or software that learns without explicit 
programming. It can be split into two branches – supervised learning and unsupervised 
learning. Supervised learning refers to problems that include an outcome or output – most 
referred to as labels, and supervised learning models aim to capture the relationship between 
the inputs and the output(s), and later predict new outputs based on unseen data. On the other 
hand, unsupervised learning has no outputs or outcomes, and the models aim to capture 
patterns in the data. Supervised learning falls into two categories: regression (continuous 
outputs) and classiϐication (distinct or categorical outputs). 

This technique has been loosely modelled after the organisation of neurons in a brain, made up 
of connected nodes – referred to as artiϐicial neurons – which perform certain mathematical 
functions and calculations to model patterns in data. 

The main function of most machine learning and AI models are to recognise patterns in data – 
and for some models – to predict outcomes based on new data. We will now explore how this is 
done with neural networks in the case of trying to learn mathematical functions. 

 

1 Introducing the neural network 

Figure 1 shows an artiϐicial neural network. As seen above, the neurons are arranged in layers. 
The layers in between the input and output layers are called hidden layers, and these layers are 
known as dense layers as each neuron in the layer takes an input from all the neurons in the 
previous layer. This will be important later in forming an equation for the functions applied to a 
layer’s input. 

1.1 Activation, weights, and bias 

Figure 1 



Figure 2 shows a neural network with one input node and one output node. 

Each neuron performs two operations on the input it receives – a weighted sum of inputs and an 
activation function. The output is then passed onto the next node in the network – this is shown 
by the arrow. 

Let us assume that we have an input variable 𝑥. The neuron ϐirst multiplies this input by a 
weight and adds a bias value. I will use the variable r to denote the result of a neurone’s 
calculations to reserve y for the network’s output. 

𝑟 = 𝑤𝑥 + 𝑏 

where w is the weight, and b is the bias. 

This is immediately recognisable as a linear regression function. However, we cannot effectively 
model real-world data with only linear relationships, therefore, we commonly implement a non-
linear function to improve our modelling. This is the activation function. While some linear 
activation functions do exist, they are generally ineffective at modelling complex relationships. 
We will use two examples of non-linear activation functions: Rectiϐied Linear Unit (or ReLU), and 
the sigmoid activation function. 

The ReLU function is deϐined as: 

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) 

Figure 3 shows the ReLU function on a graph. It deactivates the neuron for negative values – or 
values below a given threshold. 

The sigmoid activation function is deϐined as: 
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𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 − exp (−𝑥)
 

exp(𝑥) = 𝑒௫ 

 

Figure 4 

This is also known as the squashing function – it turns them into outputs ranging from 0 to 1 – 
with more positive values producing outputs towards 1 and more negative values producing 
outputs towards 0.  This means that it is useful for classiϐication and probability prediction 
tasks. 

Now that we have examined some examples of non-linear activation functions, we can amend 
our original equation for the neuron’s calculations. 

𝑟 = 𝑎(𝑤𝑥 + 𝑏) 

where a is the activation function. 

This seems simple right now, but we rarely deal with single variables, so let’s investigate how 
the neuron works when taking an input with multiple variables. 

1.2 Multivariate linear regression 

When dealing with inputs that have multiple variables, the neuron moves from using a 
univariate linear regression to a multivariate linear regression. 

𝑟 = 𝑎(𝑤ଵ𝑥ଵ + 𝑤ଶ𝑥ଶ + ⋯ + 𝑤௡𝑥௡ + 𝑏)  

𝑤 ∈ ℝ , 𝑛 ∈ ℕ 

𝑟 = 𝑎(෍ 𝑤௜𝑥௜ + 𝑏)

௡

௜ୀଵ

 



This is also known as a weighted sum, or linear combination, of the inputs. We can more 
compactly express the above equation by introducing linear algebra and matrices into our 
working. We will now rewrite the multiple values of w and x into single vectors. 

𝒙 = [𝑥ଵ, 𝑥ଶ, … , 𝑥௡] ∈ ℝ௡ 

𝒘 = [𝑤ଵ, 𝑤ଶ, … , 𝑤௡] ∈ ℝ௡ 

Our equation now becomes: 

𝑟 = 𝑎(𝒘 ⋅ 𝒙 + 𝑏) 

with the dot in between w and x showing a linear combination. 

We have only covered a neural network with layers containing only one neuron each. Now, we 
will consider a much more common neural network architecture where layers may have 
multiple neurons.  

We will now apply the previous equation to an entire layer. We will take the second hidden layer, 
or the third layer of the network in Figure 1. Each neuron in the layer will have ϐive weights – 
one for each neuron’s output in the previous layer, and one bias value. Therefore, we can 
represent the layer’s weights and biases as a matrix and vector respectively. 

𝒙 = [𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ] 

𝑾 = ቎

𝑤ଵ,ଵ … 𝑤ଵ,ହ

⋮ ⋱ ⋮
𝑤ଷ,ଵ … 𝑤ଷ,ହ

቏ 

𝒃 = [𝑏ଵ, 𝑏ଶ, 𝑏ଷ] 

Each row of the weights matrix 𝑾 represents the row vector of weights for a corresponding 
neuron in the second hidden layer. Now, we can use a single equation to represent all of the 
mathematical operations in the layer. 

In this case, the vector r will have 3 values – one for each neuron’s output. 

𝒓 = 𝑎(𝑾𝒙 + 𝒃) 

Figure 1 repeated 



We have now shown how neurons and layers in a neural network process inputs to form outputs 
– however we have not yet discovered how they facilitate learning and pattern recognition in 
data. The weights and biases used in each layer are key to this – and they can be referred to as 
parameters. Parameters are generally variables in a model that are learned from data and 
updated during the training of a model. Next, we will explore a concept called gradient descent 
to understand how neural networks learn and ϐind the best weights and biases to model the 
data. 

2 Optimization and loss 
The way in which neural networks decide what values to use for its weights and biases is called 
optimization. There are various optimization algorithms, and we will speciϐically examine the 
(stochastic) gradient descent algorithm. 

2.1 Loss 

Loss, or error, is a simple concept – how far the prediction is from the true value. This differs 
between regression and binary classiϐication (true or false) problems. An example of a 
regression loss metric is mean squared error (MSE), deϐined as: 

𝑀𝑆𝐸 =
∑ (𝑦௜ − 𝑦ො௜)ଶ௡

௜ୀଵ

𝑛
 

where 𝑦ො௜  refers to the prediction of a y value from the network’s output, and 𝑦௜  refers to the true 
value of y for that data point. 

An example of a classiϐication loss metric is log loss (also known as binary cross-entropy), which 
measures the models performance by indicating how close the prediction probability is to the 
true value. It is deϐined as: 

𝐿 = −
1

𝑛
෍ 𝑦௜ log൫𝑝(𝑦௜)൯ + (1 − 𝑦௜) log൫1 − 𝑝(𝑦௜)൯

௡

௜ୀଵ

 

where 𝑝(𝑦௜) denotes the predicted probability of the outcome being true, therefore 1 − 𝑝(𝑦௜) is 
also the predicted probability of the outcome being false. 

It is important for us to examine how the graphs look for each of these loss functions because it 
will allow us to perform the next step of the weight optimization process. 



Figure 4 shows the two graphs for the loss functions – with mean squared error on the left and 
log loss on the right. Both functions are differentiable, which is important in the process of 
optimizing weights through gradient descent. It is important to note that both functions have 
minimum values that can be reached. They can also be described as convex functions. 

2.2 Gradient Descent 

The gradient descent algorithm works by calculating the derivative of the loss function with 
respect to the parameters of the neural network, and then iteratively updating the weights until 
they are optimised. This happens during the training of a neural network. The loss function is 
considered with the parameters as an input - 𝐿(𝜃) where 𝜃 refers to the parameters (weights 
and biases) of the model. By calculating a gradient – the model can change the weights to 
approach a local minimum of the loss function. This is where the model performs best, and the 
weights are optimised.  

The gradient function is referred to as: 

∇𝐿(𝜃) 

A learning rate is used to control how much the weights are changed to minimise loss. If the 
learning rate is too high, the algorithm may not converge to the minimum. On the other hand, if 
the learning rate is too low, the algorithm may take too long to converge. The equation below 
represents how the weights are updated after each iteration of the gradient descent algorithm. 

𝜃௡௘௪ = 𝜃 − η∇𝐿(𝜃) 

where η denotes the learning rate. 

Once the weights are optimised, they are used to predict an outcome given a new input value. 

Conclusion 
The neural network is a powerful model that can be applied to many real-world problems – 
including but not limited to computer vision, natural language processing and stock price 
forecasting. We have investigated a simple feedforward network, however there are many more 
types of networks that including convolutional neural networks and recurrent neural networks 
that have unlocked new possibilities for the world of AI and machine learning. 
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