
Neural Networks

How a neural network learns to transform data

Feranmi Dere

Tom Rocks Maths Essay Competition 2024

Introduction
Neural networks are a type of modelling used in Artiϐicial Intelligence and Machine Learning –
mostly used in deep learning – and this speciϐically refers to the use of artiϐicial neural networks
with multiple hidden layers, the meaning of which will be clariϐied later in this essay.

Machine learning is the concept of algorithms or software that learns without explicit
programming. It can be split into two branches – supervised learning and unsupervised
learning. Supervised learning refers to problems that include an outcome or output – most
referred to as labels, and supervised learning models aim to capture the relationship between
the inputs and the output(s), and later predict new outputs based on unseen data. On the other
hand, unsupervised learning has no outputs or outcomes, and the models aim to capture
patterns in the data. Supervised learning falls into two categories: regression (continuous
outputs) and classiϐication (distinct or categorical outputs).

This technique has been loosely modelled after the organisation of neurons in a brain, made up
of connected nodes – referred to as artiϐicial neurons – which perform certain mathematical
functions and calculations to model patterns in data.

The main function of most machine learning and AI models are to recognise patterns in data –
and for some models – to predict outcomes based on new data. We will now explore how this is
done with neural networks in the case of trying to learn mathematical functions.

1 Introducing the neural network

Figure 1 shows an artiϐicial neural network. As seen above, the neurons are arranged in layers.
The layers in between the input and output layers are called hidden layers, and these layers are
known as dense layers as each neuron in the layer takes an input from all the neurons in the
previous layer. This will be important later in forming an equation for the functions applied to a
layer’s input.

1.1 Activation, weights, and bias

Figure 1

Figure 2 shows a neural network with one input node and one output node.

Each neuron performs two operations on the input it receives – a weighted sum of inputs and an
activation function. The output is then passed onto the next node in the network – this is shown
by the arrow.

Let us assume that we have an input variable 𝑥. The neuron ϐirst multiplies this input by a
weight and adds a bias value. I will use the variable r to denote the result of a neurone’s
calculations to reserve y for the network’s output.

𝑟 = 𝑤𝑥 + 𝑏

where w is the weight, and b is the bias.

This is immediately recognisable as a linear regression function. However, we cannot effectively
model real-world data with only linear relationships, therefore, we commonly implement a non-
linear function to improve our modelling. This is the activation function. While some linear
activation functions do exist, they are generally ineffective at modelling complex relationships.
We will use two examples of non-linear activation functions: Rectiϐied Linear Unit (or ReLU), and
the sigmoid activation function.

The ReLU function is deϐined as:

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥)

Figure 3 shows the ReLU function on a graph. It deactivates the neuron for negative values – or
values below a given threshold.

The sigmoid activation function is deϐined as:

Figure 2

Figure 3

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 − exp (−𝑥)

exp(𝑥) = 𝑒௫

Figure 4

This is also known as the squashing function – it turns them into outputs ranging from 0 to 1 –
with more positive values producing outputs towards 1 and more negative values producing
outputs towards 0. This means that it is useful for classiϐication and probability prediction
tasks.

Now that we have examined some examples of non-linear activation functions, we can amend
our original equation for the neuron’s calculations.

𝑟 = 𝑎(𝑤𝑥 + 𝑏)

where a is the activation function.

This seems simple right now, but we rarely deal with single variables, so let’s investigate how
the neuron works when taking an input with multiple variables.

1.2 Multivariate linear regression

When dealing with inputs that have multiple variables, the neuron moves from using a
univariate linear regression to a multivariate linear regression.

𝑟 = 𝑎(𝑤ଵ𝑥ଵ + 𝑤ଶ𝑥ଶ + ⋯ + 𝑤௡𝑥௡ + 𝑏)

𝑤 ∈ ℝ , 𝑛 ∈ ℕ

𝑟 = 𝑎(෍ 𝑤௜𝑥௜ + 𝑏)

௡

௜ୀଵ

This is also known as a weighted sum, or linear combination, of the inputs. We can more
compactly express the above equation by introducing linear algebra and matrices into our
working. We will now rewrite the multiple values of w and x into single vectors.

𝒙 = [𝑥ଵ, 𝑥ଶ, … , 𝑥௡] ∈ ℝ௡

𝒘 = [𝑤ଵ, 𝑤ଶ, … , 𝑤௡] ∈ ℝ௡

Our equation now becomes:

𝑟 = 𝑎(𝒘 ⋅ 𝒙 + 𝑏)

with the dot in between w and x showing a linear combination.

We have only covered a neural network with layers containing only one neuron each. Now, we
will consider a much more common neural network architecture where layers may have
multiple neurons.

We will now apply the previous equation to an entire layer. We will take the second hidden layer,
or the third layer of the network in Figure 1. Each neuron in the layer will have ϐive weights –
one for each neuron’s output in the previous layer, and one bias value. Therefore, we can
represent the layer’s weights and biases as a matrix and vector respectively.

𝒙 = [𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ]

𝑾 = ቎

𝑤ଵ,ଵ … 𝑤ଵ,ହ

⋮ ⋱ ⋮
𝑤ଷ,ଵ … 𝑤ଷ,ହ

቏

𝒃 = [𝑏ଵ, 𝑏ଶ, 𝑏ଷ]

Each row of the weights matrix 𝑾 represents the row vector of weights for a corresponding
neuron in the second hidden layer. Now, we can use a single equation to represent all of the
mathematical operations in the layer.

In this case, the vector r will have 3 values – one for each neuron’s output.

𝒓 = 𝑎(𝑾𝒙 + 𝒃)

Figure 1 repeated

We have now shown how neurons and layers in a neural network process inputs to form outputs
– however we have not yet discovered how they facilitate learning and pattern recognition in
data. The weights and biases used in each layer are key to this – and they can be referred to as
parameters. Parameters are generally variables in a model that are learned from data and
updated during the training of a model. Next, we will explore a concept called gradient descent
to understand how neural networks learn and ϐind the best weights and biases to model the
data.

2 Optimization and loss
The way in which neural networks decide what values to use for its weights and biases is called
optimization. There are various optimization algorithms, and we will speciϐically examine the
(stochastic) gradient descent algorithm.

2.1 Loss

Loss, or error, is a simple concept – how far the prediction is from the true value. This differs
between regression and binary classiϐication (true or false) problems. An example of a
regression loss metric is mean squared error (MSE), deϐined as:

𝑀𝑆𝐸 =
∑ (𝑦௜ − 𝑦ො௜)ଶ௡

௜ୀଵ

𝑛

where 𝑦ො௜ refers to the prediction of a y value from the network’s output, and 𝑦௜ refers to the true
value of y for that data point.

An example of a classiϐication loss metric is log loss (also known as binary cross-entropy), which
measures the models performance by indicating how close the prediction probability is to the
true value. It is deϐined as:

𝐿 = −
1

𝑛
෍ 𝑦௜ log൫𝑝(𝑦௜)൯ + (1 − 𝑦௜) log൫1 − 𝑝(𝑦௜)൯

௡

௜ୀଵ

where 𝑝(𝑦௜) denotes the predicted probability of the outcome being true, therefore 1 − 𝑝(𝑦௜) is
also the predicted probability of the outcome being false.

It is important for us to examine how the graphs look for each of these loss functions because it
will allow us to perform the next step of the weight optimization process.

Figure 4 shows the two graphs for the loss functions – with mean squared error on the left and
log loss on the right. Both functions are differentiable, which is important in the process of
optimizing weights through gradient descent. It is important to note that both functions have
minimum values that can be reached. They can also be described as convex functions.

2.2 Gradient Descent

The gradient descent algorithm works by calculating the derivative of the loss function with
respect to the parameters of the neural network, and then iteratively updating the weights until
they are optimised. This happens during the training of a neural network. The loss function is
considered with the parameters as an input - 𝐿(𝜃) where 𝜃 refers to the parameters (weights
and biases) of the model. By calculating a gradient – the model can change the weights to
approach a local minimum of the loss function. This is where the model performs best, and the
weights are optimised.

The gradient function is referred to as:

∇𝐿(𝜃)

A learning rate is used to control how much the weights are changed to minimise loss. If the
learning rate is too high, the algorithm may not converge to the minimum. On the other hand, if
the learning rate is too low, the algorithm may take too long to converge. The equation below
represents how the weights are updated after each iteration of the gradient descent algorithm.

𝜃௡௘௪ = 𝜃 − η∇𝐿(𝜃)

where η denotes the learning rate.

Once the weights are optimised, they are used to predict an outcome given a new input value.

Conclusion
The neural network is a powerful model that can be applied to many real-world problems –
including but not limited to computer vision, natural language processing and stock price
forecasting. We have investigated a simple feedforward network, however there are many more
types of networks that including convolutional neural networks and recurrent neural networks
that have unlocked new possibilities for the world of AI and machine learning.

Figure 4.1 Figure 4.2

