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Pingala’s Poetry Puzzle 
 

Introduction: 
 

Despite its reputation as a tedious and uninspiring subject, I consider mathematics to be one of the 

most creative subjects there is. While we cannot control what an answer turns out to be, the art is in 

the path we take to connect one truth to another. This takes lateral thinking and insight, and this 

insight is most beautiful, in my opinion, when motivated by a real-world problem. My favourite 

example of this has its roots in ancient Indian literature, in the study of Sanskrit prosody. 

Sanskrit Prosody: 
 

Sanskrit is an ancient language, spoken in various forms between roughly 400BCE to 1350CE in South 

Asia. While there are no native speakers left, it is still very important as the language of the Vedas, 

the oldest scriptures of Hinduism. Sanskrit prosody, also known as Chandas, is one of the six 

Vendangas, traditional fields of study surrounding the Vedas. This field studies poetic metre and 

verse in Sanskrit, particularly that of the Vedas themselves. Traditionally, it is tightly linked to 

mathematics, due to the importance of structure and patterns. 

A verse in Sanskrit poetry is generally split into four lines, known as padas, and each line is 

constructed of a few morae, known as matras. These morae either come alone, as a short syllable 

(laghu), or in a pair, as a long syllable (guru). There are three major types of metre, and one type 

known as matra-vrttas lead to an interesting mathematical puzzle. A line in matra-vrtta consists of a 

constant total number of morae, but the number and arrangement of syllables is arbitrary. For 

example, a line with two morae could either have two short syllables or one long syllable. I will 

represent these lines with the diagrams below, where a white square represents a short syllable, and 

a green rectangle represents a long syllable, equivalent in width to two short syllables (1). 

 

Fig. 1: A line with two morae can have either two short syllables or one long syllable. 

One poet, named Pingala, invented a lot of incredibly innovative mathematics to help him study 

Sanskrit prosody. He is often credited with the invention of the binary number system and being the 

first to treat ‘zero’ as a number. In studying matra-vrttas, he wondered how many different ways 

there are to construct a line with a given number of morae, 𝑚. For example, a line of 5 morae can be 

arranged in 8 ways, as in Figure 2. 
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Fig. 2: There are eight ways to construct a line with five morae. 

Attacking the Puzzle: 
 

The first method you might take to try to solve this problem is by attempting to systematically write 

down all the different ways to construct a line. One way to do this is by considering increasing 

numbers of long syllables. You might start by investigating how many ways there are to include 0 

long syllables. The answer will always be one, as every way of reordering short syllables is the same. 

Next, you could consider the possibilities with exactly 1 long syllable. Here you would find that that 

there are 𝑚− 1 different placements of long syllables for 𝑚 morae, as this syllable could be placed 

in any of the 𝑚 positions except the last. You could continue by considering 2 long syllables, 

determining all the places you can put the second long syllable if the first is at the start of the line, by 

moving the second along each available slot until you reach the end, as shown in Figure 2. Each time 

the second long syllable gets to the end of the poem, you can then move the first long syllable right 

by one position, and repeat, until there is no more space. Remember that the second long syllable 

must not go before the first, as this possibility will already have been covered. This method can be 

replicated for three or more long syllables, however the complexity increases rapidly as you add 

more long syllables. This makes it difficult to predict the total number of arrangements you will find, 

even though this searching method is exhaustive. Clearly, it would be convenient if there were a 

simpler way to count the possibilities. 

Pingala spotted a pattern that connects different numbers of morae. Let us define some sequence 𝑈 

such that 𝑈𝑚 returns the number of arrangements of a line of 𝑚 morae. We can observe that every 

line must either end in a short or a long syllable, leading us to realise that 𝑈𝑚 is equal to the number 

of arrangements that end in a short syllable plus the number of arrangements that end in a long 

syllable. This simple idea allows us to find a much easier way to count the number of arrangements, 

as long as we can count how many arrangements end in each type of syllable. First, considering how 

many arrangements end in a short syllable, we notice that we can remove the short syllable from the 

end, and now we have another line, this time with 𝑚− 1 morae. This gives us the same problem, 

just with a shorter line. We will just write this as 𝑈𝑚−1 for now. Moving on to the set ending in the 

long syllable, we can again just take it off, which leaves us with a line of 𝑚 − 2 morae, as the long 

syllable consists of 2 morae. The number of these combinations that exist is therefore 𝑈𝑚−2. Since 

we know that 𝑈𝑚 is the sum of the number ending in a short syllable and the number ending in a 

long syllable, we can write that 𝑈𝑚 = 𝑈𝑚−1 + 𝑈𝑚−2. Figure 3 shows this method of counting the 

arrangements of a line with five morae.  



Finn Evans 

 

Fig. 3: A different way to find all the 5-long lines, by dividing them up into 4-long lines with an added 

short syllable and 3-long lines with an added long syllable. 

The formula 𝑈𝑚 = 𝑈𝑚−1 + 𝑈𝑚−2 applies for all positive integer values of 𝑚 except 1 and 2, since 

you would have to find 𝑈−1 and 𝑈0 which do not make sense, as you cannot have a line with 

negative or zero morae. Therefore, we have to define that 𝑈1 = 1 and 𝑈2 = 2, and then we can 

calculate 𝑈𝑚 for all 𝑚 ≥ 3 using the recursive formula. 

 

Fig. 4: The value of 𝑈𝑚 can be found much more easily using the recursive formula than by listing 

every possible arrangement. 

As we can see, by 15 morae there are already almost one thousand ways to arrange the line of the 

poem. It would be much harder to count each of these individually than to use the recursive method. 

We can simply find 𝑈3 as 𝑈2 + 𝑈1, then 𝑈4 as 𝑈3 + 𝑈2, and so on until we reach 𝑈15, which only 

takes 13 simple additions. 

At this point, you may have felt like this sequence feels vaguely familiar. This sequence is very similar 

to the famous Fibonacci sequence. The Fibonacci sequence, 𝐹, is defined such that 𝐹𝑛 = 𝐹𝑛−1 +

𝐹𝑛−2 for all values of 𝑛 ≥ 3, the same recurrence relationship as in the sequence 𝑈. However, the 

Fibonacci sequence is defined such that 𝐹1 = 1 and 𝐹2 = 1, whereas the sequence 𝑈 defines that 

𝑈1 = 1 and 𝑈2 = 2. As 𝐹3 = 𝐹2 + 𝐹1 = 2, this means that 𝑈1 = 𝐹2 and 𝑈2 = 𝐹3. Since we can 

calculate the next element of each sequence by adding two consecutive previous terms, we can see 

that the rest of the 𝑈 sequence will be the same as the 𝐹 sequence, except that 𝑈𝑚 = 𝐹𝑚+1, so the 

sequences are one place out of line. 

A Better Answer: 
 

While a useful tool to solve our poetry puzzle, the recursive method still feels tedious. It would be 

better to jump straight to an answer for a given number of morae, without first answering it for 3, 4, 

5, and so on. To define precisely what we mean by this mathematically, however, we need to define a 

few terms first. For the sake of this essay, I will refer to the relationship: 𝑈𝑚 = 𝑈𝑚−1 + 𝑈𝑚−2 as ‘the 

+ +

+ +
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+
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m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Pingala recursion’, and any sequence that follows this relationship as a ‘Pingala sequence’. The term 

‘the Fibonacci sequence’ will be used to describe the specific Pingala sequence, 𝐹, where 𝐹0 = 0 and 

𝐹1 = 1. Notice that this is a slightly different definition of the Fibonacci sequence to the one I 

previously used, where we defined 𝐹1 and 𝐹2. These alternative definitions lead to exactly the same 

sequence beyond 𝐹0, however defining 𝐹0 will make the maths slightly easier, and is the modern 

convention. Therefore, to define what we mean by a ‘simpler’ way to solve Pingala’s puzzle, we can 

ask: Can we find a formula for 𝐹𝑛 where any reference to 𝐹 has a constant subscript? This limitation 

means that we can only define 𝐹𝑛 in terms of some pre-defined initial values and 𝑛 itself. The 

advantage of this is that we can cut straight to the chase, without having to iterate to find our result. 

An expression like this is called a ‘closed-form expression’. 

If you have ever tried to find such an expression for the Fibonacci numbers, you will know that it is 

not as simple as it sounds. It can feel like the only obvious pattern in the numbers is how they relate 

to the ones next to them, while seeming completely unrelated to their actual position in the 

sequence. In this case, it is helpful to step back, and study Pingala sequences more generally, to see if 

this approach can give us any better insights. 

Operations on Pingala Sequences: 
 

Let us consider doing different operations on Pingala sequences. A reasonable question is whether 

one will stay a Pingala sequence after the operation. There are two particularly useful operations, 

starting with multiplying each term by a constant, 𝑘. Let 𝑈 be an arbitrary Pingala sequence, and 𝑉 

be the sequence such that 𝑉𝑛 = 𝑘𝑈𝑛. By definition: 

𝑈𝑛 = 𝑈𝑛−1 + 𝑈𝑛−2 

We can multiply both sides by 𝑘: 

𝑘𝑈𝑛 = 𝑘(𝑈𝑛−1 + 𝑈𝑛−2) 

𝑘𝑈𝑛 = 𝑘𝑈𝑛−1 + 𝑘𝑈𝑛−2 

As 𝑉𝑛 is defined as 𝑘𝑈𝑛 we can rewrite this as: 

𝑉𝑛 = 𝑉𝑛−1 + 𝑉𝑛−2 

Therefore we have shown that 𝑉 is also a Pingala sequence as it satisfies the Pingala recursion. 

Another operation we could consider is adding together two Pingala sequences. If we have two 

Pingala sequences, 𝑈 and 𝑉, and another sequence 𝑊 such that 𝑊𝑛 = 𝑈𝑛 + 𝑉𝑛, we can find an 

alternative expression for 𝑊𝑛 by rewriting 𝑈𝑛 and 𝑉𝑛 with the Pingala recursion: 

𝑊𝑛 = (𝑈𝑛−1 + 𝑈𝑛−2) + (𝑉𝑛−1 + 𝑉𝑛−2) 

Regrouping the terms: 

𝑊𝑛 = (𝑈𝑛−1 + 𝑉𝑛−1) + (𝑈𝑛−2 + 𝑉𝑛−2) 

We can now use the definition of 𝑊, replacing each bracket with a term of 𝑊. 

𝑊𝑛 = 𝑊𝑛−1 +𝑊𝑛−2 

Again, we have shown that 𝑊 obeys the Pingala recursion and is therefore a Pingala sequence. 
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Now we have two different ways to manipulate Pingala sequences without disobeying the Pingala 

recursion, and combining these serves as a very powerful tool for generating new Pingala sequences, 

by defining sequence 𝑊 in terms of Pingala sequences 𝑈 and 𝑉 as: 

𝑊𝑛 = 𝑎𝑈𝑛 + 𝑏𝑉𝑛 (1) 

where 𝑎 and 𝑏 are arbitrary constants. We know that  𝑊𝑛 must be a Pingala sequence as each term 

in the addition is due to the multiplication rule, and they add to a Pingala sequence thanks to the 

addition rule. In fact, this formula is so powerful that just by adjusting the choice of 𝑎 and 𝑏, we can 

create any possible Pingala sequence. 

Constructing Any Pingala Sequence: 
 

If we know the first two terms of a Pingala sequence, 𝑈0 and 𝑈1, we can find the rest of the 

sequence using the Pingala recursion. I like to say that they are ‘deterministic’ beyond the second 

item: if you know all previous items exactly, you can also know all future items exactly. Therefore, we 

can uniquely define any Pingala sequence by its first two values. Two Pingala sequences are different 

if and only if the first two values are different. Therefore, if we can manipulate 𝑎 and 𝑏 so that 𝑊0 

and 𝑊1 are given the correct values, we can be sure that every subsequent term in the sequence will 

be given the correct value too. This leads us to two simultaneous equations in 𝑎 and 𝑏: 

1 :   𝑊0 = 𝑎𝑈0 + 𝑏𝑉0

2 : 𝑊1 = 𝑎𝑈1 + 𝑏𝑉1
 

By multiplying the first equation by 
𝑉1

𝑉0
 we obtain: 

𝑉1
𝑉0

1 :   
𝑉1𝑊0

𝑉0
=
𝑉1𝑈0
𝑉0

𝑎 + 𝑉1𝑏 

Now subtracting each side by the corresponding side of the second equation we get: 

𝑉1
𝑉0

1 − 2 :   
𝑉1𝑊0

𝑉0
−𝑊1 =

𝑉1𝑈0
𝑉0

𝑎 − 𝑈1𝑎

(
𝑉1
𝑉0

1 − 2 )𝑉0: 𝑉1𝑊0 −𝑊1𝑉0 = (𝑉1𝑈0 − 𝑈1𝑉0)𝑎

 

𝑎 =
𝑉1𝑊0 −𝑊1𝑉0
𝑉1𝑈0 − 𝑈1𝑉0

(2) 

We can follow a similar method to find 𝑏: 

𝑈1
𝑈0

1 :   
𝑈1𝑊0

𝑈0
= 𝑈1𝑎 +

𝑈1𝑉0
𝑈0

𝑏

𝑈1
𝑈0

1 − 2 :   
𝑈1𝑊0

𝑈0
−𝑊1 =

𝑈1𝑉0
𝑈0

𝑏 − 𝑉1𝑏

(
𝑈1
𝑈0

1 − 2 )𝑈0:    𝑈1𝑊0 −𝑊1𝑈0 = (𝑈1𝑉0 − 𝑉1𝑈0)𝑏

 

𝑏 =
𝑈1𝑊0 −𝑊1𝑈0
𝑈1𝑉0 − 𝑉1𝑈0

 

𝑏 =
𝑈0𝑊1 −𝑊0𝑈1
𝑉1𝑈0 − 𝑈1𝑉0

(3) 
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Therefore, we have found a formula for 𝑎 and 𝑏 that can give us any desired Pingala sequence 𝑊 as 

long as we already have two Pingala sequences 𝑈 and 𝑉, and we know what we want for 𝑊0 and 𝑊1. 

This only does not work if 𝑉1𝑈0 −𝑈1𝑉0 = 0 as this is the denominator, and we cannot divide by zero. 

This occurs if 𝑈𝑛 = 𝑘𝑉𝑛 where 𝑘 is a constant, as the expression is then written: 𝑉1𝑘𝑉0 − 𝑘𝑉1𝑉0 

which is clearly zero. This cannot work because adding constant multiples of the same sequence will 

simply result in another constant multiple of the same sequence. Constant multiplication is 

insufficient to find all Pingala sequences as the ratio of the starting terms of a series is preserved 

under a constant multiplication, however any ratio could exist between the starting terms in an 

arbitrary Pingala sequence. 

Finding Examples of Pingala Sequences: 
 

We may feel no closer to finding a closed-form formula for the Fibonacci numbers, since this method 

relies on having a closed-form formula for two Pingala sequences, which seems harder than doing so 

for one. However, we are in a slightly different situation, as we have removed any starting conditions 

for sequences 𝑈 and 𝑉, meaning all we have to do is find two sequences that satisfy the Pingala 

recursion with no concern for their first two values.  

One idea is a sequence of only zeroes. While this does satisfy the Pingala recursion, and is therefore a 

Pingala sequence, unfortunately it is not useful for our purpose. This is because it is a constant 

multiple, 0, of every other Pingala sequence. Therefore, it is not viable in our general Pingala 

expression. 

Instead, let us invent a function 𝐼 such that 𝐼(𝑈𝑛) = 𝑈𝑛+1. This function acts as an ‘incrementor’ 

operation on 𝑈, meaning that it gives the next item of 𝑈 given the current one. Using the Pingala 

recursion: 

𝑈𝑛 = 𝑈𝑛−1 + 𝑈𝑛−2 

𝐼(𝑈𝑛) = 𝐼(𝑈𝑛−1 + 𝑈𝑛−2) 

𝑈𝑛+1 = 𝐼(𝑈𝑛−1 + 𝑈𝑛−2) 

By definition, we also know that 𝑈𝑛+1 = 𝑈𝑛 + 𝑈𝑛−1, so we can write that: 

𝑈𝑛 +𝑈𝑛−1 = 𝐼(𝑈𝑛−1 +𝑈𝑛−2) 

The left-hand side is now the same as individually incrementing each term. Therefore: 

𝐼(𝑈𝑛−1) + 𝐼(𝑈𝑛−2) = 𝐼(𝑈𝑛−1 + 𝑈𝑛−2) 

Looking at the structure of this equation, it looks very similar to the process of factorisation. 

Therefore, a reasonable hypothesis is that 𝐼 is a multiplication by some constant 𝑥. Following this 

hypothesis: 

𝑥𝑈𝑛 = 𝑈𝑛+1 

Consequently, we can see that 𝑈𝑛 must be found by repeated multiplication by 𝑥, starting at 𝑈0, 

which is simply exponentiation, meaning that a possible expression for 𝑈𝑛 could be 𝑈𝑛 = 𝑥𝑛. This 

allows us to rewrite our Pingala recursion for this sequence as: 

𝑥𝑛 = 𝑥𝑛−1 + 𝑥𝑛−2 

This leaves us with an equation to find our made-up constant 𝑥. By dividing through by 𝑥𝑛−2 we are 

left with a simple quadratic equation: 
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𝑥2 = 𝑥 + 1 

Using the quadratic formula, we can solve this equation to get: 

𝑥 =
1 ± √5

2
 

This gives us two possible values of 𝑥, which also means that we arrive with two different sequences 

that both satisfy the Pingala recursion, based on which value of 𝑥 we choose. These values are 

actually very common numbers in mathematics. The positive one is the ‘golden ratio’, written 𝜑, and 

roughly equal to 1.618. The negative one is less well-known, but is also very important. It is denoted 

𝜓 and is roughly equal to −0.168. Exactly: 

𝜑 =
1 + √5

2
 

𝜓 =
1 − √5

2
 

These numbers allow us to define two Pingala sequences, 𝑈 and 𝑉: 

𝑈𝑛 = 𝜑𝑛 

𝑉𝑛 = 𝜓𝑛 

The General Expression for a Pingala Sequence: 
 

These two sequences let us generate any possible Pingala sequence, using the simultaneous 

equations from before. We can first evaluate the first two terms for each sequence: 

𝑈0 = 𝜑0 = 1    𝑈1 = 𝜑1 = 𝜑

𝑉0 = 𝜓0 = 1 𝑉1 = 𝜓1 = 𝜓
 

Plugging these into our general Pingala sequence expression, equation (1): 

𝑊𝑛 = 𝑎𝑈𝑛 + 𝑏𝑉𝑛
𝑊𝑛 = 𝑎𝜑𝑛 + 𝑏𝜓𝑛 

And we can solve for 𝑎 using equation (2): 

𝑎 =
𝑉1𝑊0 −𝑊1𝑉0
𝑉1𝑈0 −𝑈1𝑉0

 

𝑎 =
𝑊0𝜓 −𝑊1

𝜓 − 𝜙
 

Using the exact values of 𝜑 and 𝜓 we can also write this as: 

𝑎 =
𝑊1 −𝑊0𝜓

√5
 

Similarly, we can find 𝑏, using equation (3): 

𝑏 =
𝑈0𝑊1 −𝑊0𝑈1
𝑉1𝑈0 −𝑈1𝑉0
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𝑏 =
𝑊1 −𝑊0𝜑

𝜓 − 𝜑
 

𝑏 =
𝑊0𝜑 −𝑊1

√5
 

Finally, we can plug these back into the main formula, equation (1): 

𝑊𝑛 = (
𝑊1 −𝑊0𝜓

√5
)𝜑𝑛 + (

𝑊0𝜑 −𝑊1

√5
)𝜓𝑛 

𝑊𝑛 =
(𝑊1 −𝑊0𝜓)𝜑

𝑛 + (𝑊0𝜑 −𝑊1)𝜓
𝑛

√5
(4) 

Therefore, this formula can be used to find the 𝑛th term of any Pingala sequence, provided we know 

the first two terms, 𝑊0 and 𝑊1. We can plug in 𝐹0 and 𝐹1 in order to find the 𝑛th term of the 

Fibonacci sequence: 

𝐹𝑛 =
(1 − 0𝜓)𝜑𝑛 + (0𝜑 − 1)𝜓𝑛

√5
 

𝐹𝑛 =
𝜑𝑛 + 𝜓𝑛

√5
(5) 

Solving the Puzzle: 
 

We can also use this formula to solve Pingala’s poetry puzzle for a line with 𝑚 morae. While this 

sequence, 𝑈, is defined in terms of 𝑈1 and 𝑈2, rather than 𝑈0 and 𝑈1, we can make up a value for 𝑈0 

that will lead to the correct formula, by preserving the Pingala recursion for the second term: 

𝑈0 +𝑈1 = 𝑈2 

𝑈0 = 𝑈2 − 𝑈1 

𝑈0 = 2 − 1 = 1 

Therefore we can use these terms in our general formula, equation (4): 

𝑈𝑚 =
(1 − 𝜓)𝜑𝑚 + (𝜑 − 1)𝜓𝑚

√5
 

𝑈𝑚 =
𝜑𝑚 − 𝜓𝜑𝑚 + 𝜑𝜓𝑚 − 𝜓𝑚

√5
 

𝑈𝑚 =
𝜑𝑚 − 𝜓𝜙𝜑𝑚−1 + 𝜑𝜓𝜓𝑚−1 − 𝜓𝑚

√5
 

Using the exact values of 𝜑 and 𝜓, we can see that: 

𝜑𝜓 = (
1 + √5

2
)(

1 − √5

2
) 

𝜑𝜓 =
1 + √5 − √5 − 5

4
 

𝜑𝜓 = −1 
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This allows us to simplify our expression for 𝑈𝑚: 

𝑈𝑚 =
𝜑𝑚 +𝜑𝑚−1 − 𝜓𝑚−1 − 𝜓𝑚

√5
 

And using the Pingala recursion on each pair: 

𝑈𝑚 =
𝜑𝑚+1 − 𝜓𝑚+1

√5
 

Compared to equation (5), this satisfies the relationship that 𝑈𝑚 = 𝐹𝑚+1, which aligns with our 

previous conclusion, suggesting we have found the correct formula. However, you may still be 

unconvinced by this formula. How can the Fibonacci series, such a simple recursive sequence on 

integers, need such a complicated formula to model it? Surely we do not need three different 

irrational numbers 1, 𝜑, 𝜓 and √5, just to find a closed-form formula for these numbers? So, to 

persuade you, these are the first 16 Fibonacci numbers calculated with our formula: 

 

Fig. 5: The Fibonacci numbers calculated with the closed-form formula are exactly equal to those 

calculated with the Pingala recursion. 

Conclusion: 
 

I find this formula a very beautiful result, due to the golden ratio, a famous mathematical constant, 

arising out of a seemingly simple and unrelated sequence. It is a great example of why 

mathematicians study abstract-seeming concepts like irrational numbers, though infinite precision is 

not possible in the real world, and why they try to generalise concepts. Using these ideas, we have 

been able to solve an ancient puzzle about poetry – a brilliant demonstration of the power and 

interconnectedness of mathematics. 

I would like to leave you with a challenge. We have studied matra-vrttas with two types of syllable, 

single morae and double morae syllables. If there were also syllables containing three morae (which 

do not actually exist in Sanskrit), this would give us new ways of arranging a line. Can you figure out 

how many ways there are to arrange a line of 𝑚 morae, where syllables can contain one, two or 

three morae? To check your answer, research the ‘Tribonacci’ numbers! 2 

 
1 An irrational number is a number that cannot be written in the form: 

𝑎

𝑏
 where both 𝑎 and 𝑏 are integers. 𝜑, 𝜓 

and √5 are all examples of these. 
2 As an interesting side-note, Fibonacci originally invented the Fibonacci sequence to solve a puzzle simulating 
the population of rabbits in a field, which is surprisingly connected to Pingala’s poetry. Much in the same way, 
the Tribonacci numbers were first invented to model elephant populations, by none other than Charles Darwin! 
(2) He was not a mathematician, and so the connections to the Fibonacci numbers were not of interest to him, 
however retrospective research has highlighted this interesting connection to Fibonacci, and indeed to our 
modified Pingala poetry puzzle. The first person to formally study the Tribonacci numbers, to our knowledge, 
was a Belgian mathematician called Agronomof (3). 

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F n 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610



Finn Evans 

 

Fig. 6: All the ways of arranging one 3-morae matra-vttra line where triple-morae syllables exist. 

There are more conceivable arrangements than where triple-morae syllables do not exist. 
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