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Why are Generating Functions the most powerful secret of
mathematics?

Mathematics is a collection of some of the greatest ideas brought together by some of the
greatest minds in history. Some of these ideas seem, at least to us today, like natural
extensions of existing maths, whereas other ideas appear to come from absolute
nothingness and yet they enlighten us in a way that would be almost impossible to foresee.
The topic I want to talk about today is an idea which probably falls in the latter category, and
that is generating functions.

A generating function is some polynomial which helps describe some related sequence of
numbers, which in its most primitive form, encodes terms of the sequence as coefficients of
terms in this polynomial. I say this is primitive because I also want to extend this idea to
using polynomials to help solve combinatorial and even geometrical problems, a task which
at first glance appears to be nonsensical. It turns out that studying behaviours of polynomials
reveals a lot about linked questions in seemingly unrelated areas of mathematics.

A new perspective on expanding brackets

We all learn how to expand brackets in secondary school. Now I’m going to ask a seemingly
unrelated problem.

How many strings of 8 digits consisting of 0s and 1s (known as a “binary string”) only contain
exactly four 0s and four 1s? Also, how many strings of 8 such digits are there all together?

This is a counting problem, which comes under the field of combinatorics. Before we start,
what actually is combinatorics? The best description of combinatorics that I’ve seen is that it
is the answer to two key questions; “How many different ways are there of doing
something?” and “Is something certain to happen?” and in this case we’re answering the
former of the two questions.

You may be able to answer this question and it’s likely you didn’t use any polynomials or
expand any brackets and you probably found a faster method than the one I’m about to
show. Yet I would argue the following method has the most beauty and generalisability.

Suppose I ask you to expand the brackets (1 + x)2. You’d quite quickly tell me that it’s 1 + 2x
+ x2 but let’s look carefully at what this actually means.

I’m going to do something subtle and re-write this as (x0 + x1)2 = x0 + 2x1 + x2. Observe that
when multiplying two powers of x, the exponents add together. The coefficient of a particular
power of x in the expansion tells us,

“How many ways could we reach this power of x by adding up exponents?”
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For example the coefficient of x1 in the expansion is 2, so there are 2 ways to choose x0 and
x1 (from our brackets) and reach x1 (in our expansion).

Let’s generalise this idea to our question about binary strings. We have 8 digits and each
digit is either a 0 or a 1 so we might consider some arbitrary function (known as a generating
function) with some arbitrary variable x,

G(x) = (x0 + x1)8

The powers of x in the brackets denote our “choices”, and the overall power denotes the
“number of digits.”

Now is the real magic. We want our string to have four 0s and four 1s but this happens if and
only if the sum of our digits is 4. But the exponent of x in the expansion of G(x) is precisely
the sum of our digits and the coefficient is precisely how many ways we could reach that
digital sum. That is to say the answer to our problem is exactly the coefficient of x4 in the
expansion of G(x). Doing this expansion gives,

G(x) = x0 + 8x1 + 28x2 + 56x3 + 70x4 + 56x5 + 28x6 + 8x7 + x8

So the answer is 70 binary strings with four 1s and 0s. And as for the second part of the
problem, how many such binary strings are there, well this is the sum of all the coefficients.
In other words,

1 + 8 + 28 + 56 + 70 + 56 + 28 + 8 + 1 = 256 binary strings

(It's no coincidence that 28 = 256 but that’s I’ll leave that for the reader to investigate!)

Everyone’s favourite sequence returns

To continue my conversation about actually using generating functions, I want to talk about
one of the most famous sequences, the Fibonacci numbers. The Fibonacci numbers are
generated using the following rules,

● The first two terms (indexed from 0) are 0 and 1
● The subsequent terms are the sum of the two previous terms

so the first few terms are,

0, 1, 1, 2, 3, 5, 8, 13 …

The issue with this definition of the sequence is that if I asked you to give me the 100th term,
you would have to calculate all the previous terms first. This begs the question of, is there a
way to go directly from the position of a term in the sequence to the term itself (known as a
closed form expression for the sequence).
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Well in fact there is such a closed form known as Binet’s formula and it's much more
interesting than you might expect. For starters it contains the golden ratio,

φ = 1.618… = (1 + √5) / 2

which would definitely fall into one of the top 5 most famous constants in maths.

What's surprising about this is that the Fibonacci sequence consists of integers, and yet its
closed form is in terms of some irrational number. Furthermore the closed form is this mess,

(φn - (-1/φ)n)/√5

It seems like pure witchcraft that such a mess gives rise to such a simple sequence, but yet
it does.

There are a variety of proofs for this result, but the one I want to show involves the use of a
generating function. Firstly, we should establish some notation; let Fn denote the nth term in
the Fibonacci sequence (so define F0 = 0, F1 = 1) and let G(x) be a polynomial where the
coefficient of the term xn is Fn so the first few terms are,

G(x) = 0x0 + x1 + x² + 2x³ + 3x⁴ + 5x⁵ + 8x⁶ + 13x⁷ + …

The question going through your head right now is probably, why are we doing this? And I
agree, defining G(x) as we did seems like a completely arbitrary decision, and again this
variable x, seems rather contrived. However, if you just trust me a bit more I’ll show you
where this is going.

First recall how we defined the Fibonacci numbers, this can be expressed algebraically as,

Fn = Fn-1 + Fn-2 for n ≥ 2

Hence we can look at G(x) and for the terms of power x² or higher, we can replace the
coefficient Fn with Fn-1 + Fn-2. If we write this out we have,

G(x) = 0 + x + (0+1)x² + (1+1)x³ + (1+2)x⁴ + (2+3)x⁵ + (3+5)x⁶ + (5+8)x⁷ + …
= 0 + x + x(0 + x + x² + 2x³ + 3x⁴ + 5x⁵ + 8x⁶ + …) + x²(0 + x + x² + 2x³ + 3x⁴ + 5x⁵ + …)

but these brackets are just G(x) themselves so,

G(x) = x + xG(x) + x²G(x)

and rearranging gives,

G(x) = x/(1-x-x²)

Now the way we get Binet’s formula is using a partial fraction decomposition and while the
details of actually doing a partial fraction decomposition are a bit messy, what we can do is
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make the following observation, the equation 1-x-x² = 0 has solutions φ and -1/φ (denote τ =
-1/φ for convenience) so when we do the partial fraction decomposition we get,

G(x) = (1/(1-φx) - 1/(1-τx))/√5

(you can verify these two expressions are actually equal).

The next observation is that a series of numbers known as a geometric series (ax)0, (ax)1,
(ax)², … has a sum of,

(ax)0 + (ax)1 + (ax)² + … = 1/(1-ax)

where x is chosen to be such that our series converges (since x was just some arbitrary
variable), and a is a constant (in particular |ax| < 1). Reversing this sum of a geometric
series, we can see that the coefficient of xn in G(x) is given precisely by,

(φn - (τ)n)/√5

This is exactly Binet’s formula which seems absolutely magical. We introduced this random
function in terms of x and managed to deduce a closed form for the Fibonacci numbers
purely algebraically.

The impossible cuboid

The next use of a generating function (or a similar type of concept) will be looking at a piece
of 3D geometry. The problem is,

Does there exist any (rectangular) cuboid with non-zero side lengths, whose Volume,
Surface Area and Perimeter (in the same units) are numerically equal?

(Perimeter in this context is the sum of the lengths of the 12 edges)

Short answer, no.

But before I delve into a longer written proof, I have made an animated YouTube video (with
my YouTube channel called “PolyaMath”) discussing this exact problem which can be found
here:

No cuboid has an equal Volume, Surface Area and Perimeter. Here's why.
https://www.youtube.com/watch?v=xVtbj5U6KJg&t=11s&ab_channel=PolyaMath

https://www.youtube.com/watch?v=xVtbj5U6KJg&t=11s&ab_channel=PolyaMath
https://www.youtube.com/watch?v=xVtbj5U6KJg&t=11s&ab_channel=PolyaMath
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To start to get a feel for the problem, first define the 3 side lengths of such a cuboid as a, b
and c. These must be positive real numbers for the cuboid to exist. We can then obtain the
following expressions for the volume (V), surface area (A) and perimeter (P),

V = abc
A = 2(ab + bc + ca)

P = 4(a + b + c)

The more experience you’ve had in the world of maths, the more eerily familiar these
expressions seem. These sorts of symmetric expressions appear readily when doing
expansions of brackets. In particular, pay attention to the function,

G(x) = (x - a)(x - b)(x - c)

This function G(x) is a cubic whose roots (in other words solutions to G(x) = 0) are precisely
a, b and c. Now expanding G(x) gives,

G(x) = x3 - (a + b + c)x2 + (ab + bc + ca)x - abc

These coefficients are known as Vieta’s formulas (this is a special case where the lead
coefficient is 1), and they provide a way to go from the roots of a polynomial to the
coefficients of a polynomial.

Now I’m going to set the expressions for the volume, surface area and perimeter equal to
some positive real constant 4k as follows,

abc = 2(ab + bc + ca) = 4(a + b + c) = 4k

Now that we’ve gathered all the ingredients for this recipe, we can start assembling them
together. Observe that we can now express G(x) in terms of this single real parameter k to
get,

G(x) = x3 - kx2 + 2kx - 4k

If you’ve seen the graph of a cubic equation before, you will know that it either crosses the
x-axis at 3 points, 2 points (one of these will be touching the x-axis) or 1 point.
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But the fundamental theorem of algebra states that a polynomial of degree n has exactly n
(up to repetition) roots. The key is that this includes complex roots, that is numbers
containing the square root of -1.

Recall that the roots of G(x) are exactly a, b and c, but by definition these must be real, not
complex so if we find that G(x) always has at least one complex root we’d reach a
contradiction to such a cuboid existing. But this is equivalent to showing that G(x) has
exactly 1 real root since because G(x) has real coefficients, the other 2 roots must be
complex and in fact they are complex conjugates of each other.

Luckily for us, there is just the tool for this. Analogous to how the sign of b2 - 4ac (the
discriminant) for a quadratic ax2 + bx + c = 0 tells us how many real and complex roots we
have, there is also a cubic discriminant.

If you’ve ever heard the tales of the mess that is the cubic formula, you’d probably expect
that a cubic discriminant would be a huge and ugly expression and as much as I’d like to tell
you it isn’t, you’re absolutely correct. The discriminant of the cubic px3 + qx2 + rx + s = 0 is
the following algebraic abomination,

q2r2 - 4pr3 - 4q3s - 27p2s2 + 18pqrs

If this is negative, then our cubic has 2 complex roots.

Now we can return back to the problem by substituting the coefficients of G(x) into this
formula to get an expression in terms of the parameter k,

(-k)2(2k)2 - 4(1)(2k)3 - 4(-k)3(-4k) - 27(1)2(-4k)2 + 18(1)(-k)(2k)(-4k)
= -432k2 + 112k3 - 12k4

= -4k2(108 - 28k + 3k2)
= -4k2(3(k - 14/3)2 + 128/3)

Since squaring any real number gives a non-negative result and since k is positive (so is
non-zero), the above expression is always negative for any positive real value of k. Hence
G(x) always has 2 complex roots, but since the roots of G(x) are the side lengths of our
cuboid, these can’t be complex, which gives us our desired contradiction.

I find it almost mesmerising that such a change in perspective from a seemingly geometric
problem to pure algebra gives rise to such an elegant solution. In fact when written up
formally, this proof doesn’t even take up half a page.



Nishad Deulkar - Rugby High School

Generating functions in modern mathematics

Given that you’ve kept reading this far, you’re probably interested in how these ideas are
used to solve real problems, not just these “toy puzzles.”

The Millenium Prize Problem

Perhaps the most famous open problem currently is the Riemann Hypothesis. The Riemann
Zeta function is given by,

𝜁(s) = 1/1s + 1/2s + 1/3s + 1/4s + …

Whilst I could talk for pages and pages about this, the Riemann Zeta function acts as a
generating function to help describe the distribution of prime numbers. The prime counting
function 𝜋(N) is approximated by N/ln(N) and knowledge of the zeros of the zeta function
helps bound the error term of the prime counting function.

In this way we’re saying that the Riemann Zeta function is a sort of generating function which
helps describe the distribution of prime numbers! (You may also be familiar with the second
form for the Zeta function involving an infinite product and primes).

Integer Partitions

Slightly less well known than the Zeta function, but definitely not unknown, is the counting of
integer partitions. Firstly we should introduce some terminology.

● Integer Composition - An integer composition of n is an ordered list of numbers
whose sum is n e.g. [1,2,1] is a composition of of 4 and would be considered distinct
from [1,1,2] or [2,1,1]

● Integer Partition - An integer partition of n is an unordered list (a set) of numbers
whose sum is n so [1,2,1], [1,1,2] and [2,1,1] are considered the same partition of 4

Let C(n) and P(n) denote the number of distinct compositions and partitions of n respectively.

It turns out that C(n) has a very simple closed form which can be found by looking
recursively. A composition of n can be given uniquely by considering a composition of n-1
and then we either + 1 to the end of this composition or we physically add 1 to the last term
of the composition of n-1. That is to say for every one composition of n-1, there are two
compositions of n so,

C(n) = 2C(n-1) and C(1) = 1

Hence, C(n) = 2n-1

If compositions are so friendly, you might hope that partitions would be just as nice.
However, that is far from the case. There is no known closed form for P(n). The only ways
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we can count integer partitions is with clever searching algorithms, or with the use of a
generating function.

The generating function for P(n) takes many ideas from our very first problem about binary
strings and expanding brackets. The generating function that gets used is,

G(x) = (1 + x1 + x2 +...)(1 + x2 + x4 +...)(1 + x3 + x6 +...)...

This may seem confusing at first, but let’s take a look at why this works, in particular, why
when we expand this is the coefficient of xn precisely P(n). If we consider the kth bracket in
G(x), this is,

(1 + x1k + x2k +...)

So the term in the kth bracket represents how many times k appears in the partition of n. We
are choosing numbers in the partition in ascending order so we don’t count the same
partition twice and hence once G(x) is expanded the coefficient of xn is exactly P(n). (What
we’ve done is found a bijection between products of terms in each bracket and partitions of
n)

If you’re curious, you can expand out the first few terms of G(x) to get,

G(x) = 1 + x + 2x2 + 3x3 + 5x4 + 7x5 + 11x6 + 15x7 + ...

Using the sum of a geometric series formula that was mentioned before, we can take |x| < 1
and say that,

G(x) = 1/(1-x1)(1-x2)(1-x3)...

Just as a little extra, a common way of representing partitions is a Ferrers diagram,

(which represents 5 + 4 + 1)

The number of dots in each row is always non-decreasing (going upwards) to avoid
overcounting the same partitions twice.
(Interestingly, if you remove this non-decreasing restriction, you can find another way of
proving the formula for C(n), which I’ll leave as an exercise for the reader)

Again just like the Riemann Zeta function, the integer partition function is rich with explored
mathematics and theorems, beyond the scope of this article, but that doesn’t take away from
the immense power that generating functions have granted us.

I hope that after reading this, you’ve gained a greater appreciation for some of the
mathematics brought to us by some of the greatest minds but also an understanding of how
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perhaps approachable some of the most advanced mathematics really is. Furthermore, I’ve
only really scratched the surface of problems using generating functions. I didn’t even
mention probability generating functions (PGFs) which are a whole other rabbit hole to
navigate through.

However, to conclude you can rest happily knowing that you have access to one of the most
amazing tools ever discovered and it’s your turn to explore!


