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Introduction  

When a magician pulls a rabbit from their hat, we marvel at their ability to defy the laws of 

physics and call the trick “magic”. Similarly, when we read a barely ten line proof that seems 

to obey perfect logic, achieve the absurd conclusion that 1=2, this is another form of circus 

magic, except that this time it's the laws of mathematics we’re defying.  

Here is the first such problem I was ever given: 

 

Consider the following proof that 1=2: 

Let  be two real numbers such that  𝑎, 𝑏 𝑎 = 𝑏

Multiply both sides by  𝑎:  𝑎2 = 𝑎𝑏

Subtract  from both sides:  𝑏2 𝑎2 − 𝑏2 = 𝑎𝑏 − 𝑏2

Factor both sides:  (𝑎 − 𝑏)(𝑎 + 𝑏) = 𝑏(𝑎 − 𝑏)

Divide both sides by  𝑎 − 𝑏:  𝑎 + 𝑏 = 𝑏

Since , replace  with :   ⟹    𝑎 = 𝑏 𝑎 𝑏 𝑏 + 𝑏 = 𝑏 2𝑏 = 𝑏

Divide by  𝑏:  2 = 1

 

If you’ve never seen this example before, it can be a little deceiving at first, even though the 

trick is actually quite simple. When we say “Divide both sides by ” this is 𝑎 − 𝑏:  𝑎 + 𝑏 = 𝑏

 



 

in fact an invalid manipulation as, given that we’ve set  it follows that . 𝑎 = 𝑏, 𝑎 − 𝑏 = 0

Thus we cannot divide by it as division is not defined for 0. The above proof is a rather 

elementary example of what I’ll explore in this essay -  

There are many reasons why I love riddles that involve finding where a false proof goes 

wrong. There’s the thrill of the challenge - pinpointing the exact nuance in concepts we think 

we understand so well. There’s the “circus trick” aspect, the way it feels almost like magic, 

wherein defying the laws of mathematics to achieve 1=2 is almost like defying the laws of 

physics and having a rabbit pop out of thin air. There’s the deeply satisfying feeling of 

knowing you’ve mastered a mathematical concept so profoundly that you can spot its limits 

and the subtle ways in which it can be manipulated. But more than anything, I think the 

appeal lies in the one constant idea that stands as the backbone to all of these puzzles: 

mathematics is a perfect system. No matter what our intuition tells us, if a result is wrong, it’s 

not the system that’s at fault - it’s our reasoning. 

There’s no other domain in life where the same holds true. In every other field, including the 

natural sciences, our frameworks are reverse-engineered from observations. Mathematics 

stands apart: it’s a system we define entirely to produce results. The perfection of 

mathematics lies in this purity of its construction. 

In this essay I’ll attempt to broadly explore the topic of false proofs in reasonable depth. The 

first part of my essay will concern itself with some of the necessary formalism required to 

understand how the logical structures of definitions and proofs are formed in mathematics - 

and thus how we can exploit them to come up with convincing false proofs. In the second 

part of this essay I’ll consider various different false proofs and divide them through what 

I’ve identified to be the structural mechanisms of the “tricks” employed to make us overlook 

the fallacies in them.  

The (many) false proofs I’ve brought in this essay are in part those I’ve gathered from friends 

and teachers over the years and in part thanks to a mathematics stack exchange thread titled 

“Best Fake Proofs (A M.SE Aprils Fools Day Collection)” that I’ve attached a link to below. 

I had a really great time going through them all and highly recommend going over this thread 

if you enjoy my essay.  

 

 



 

The Recipe for Constructing One  

 

What is a mathematical definition? 

 

The very first building block it’s important we consider when trying to tackle the topic of a 

valid or invalid mathematical statement is the definition of the terms we employ in it. I won't 

be directly discussing definitions in that much depth for this essay, however, a quick 

exploration into what it rigorously means for something to be “well-defined” is important for 

understanding the logical flaws embedded in some of the false proofs I'll explore later.  

 

For a mathematical concept to be called “well-defined” it must uphold two properties: 

1)​ existence 

2)​ uniqueness 

 

Starting by understanding the latter, the criteria for uniqueness is actually quite simple and 

intuitive. If I want to define something, not even necessarily in the realm of mathematics, I 

want my definition to point to something unique. When I tell the grocery store worker, “could 

you please tell me where I can find the oranges?”, I don't want them to point me out to both 

the “apples” and “oranges”. I want the word “oranges” to define a unique object that will 

usefully help me refer to things in the real world. The same idea holds true in mathematics: 

when we define a concept, we want that definition to refer to one thing or else we get an 

inconsistency wherein a pointer refers to two different things. For example, if I were to define 

 to be the real solution to the equation ,  would not be “well-defined” as there are 𝑥 𝑥2 = 4 𝑥

two such solutions (2 and -2). 

 

Existence may initially seem like a bit of a weird criteria for “well - definedness” given that 

in our day to day use of the word “define” we mean the process of just associating a tag to a 

“thing” that we can refer to. That is, the “thing’s” existence doesn't matter so much - we can 

just semantically assign anything a tag and call that a definition. However, at the risk of 

getting a bit philosophical for a second, this in essence ignores that in our lived reality, the 

conceptualization of a “thing” is in and of itself enough to make it exist (if only in the 

 



 

abstract realm of our conscience). For example, I could define a "unicorn" as a horse with a 

single horn, and this definition would still be valid in conversation, even if no such creature 

exists in the physical world as the mere conceptualization (in this case, through assigning it a 

description) brings the idea to life, at least in a limited abstract sense. Thus the requirement of 

existence in a definition (of our day to day lives) is trivial which may - falsely - lead us to 

believe that it's an unnecessary condition.  

Unfortunately, mathematics isn't a realm wherein for a thing to exist it can simply float within 

our brains as an abstraction. Rather it must adhere to all the other pre-existing definitions and 

rules of the game that we have laid. That is, a mathematical definition must ensure that, for 

any valid input or case, an entity described by the definition can be constructed or identified. 

If the definition leads to a situation wherein something doesn’t exist for certain inputs, it’s not 

well-defined. For example, defining  to be the integer solution to the equation  𝑥
1

𝑥2 = 3

would not be a valid definition as there exists no integer  that upholds this equation. 𝑥

 

What is a mathematical proof? 

 

The second concept important to understand in order to start talking about a false proof is… a 

proof. That is, let's try to take a second to understand what a mathematical proof looks like 

and how we can characterize what renders it valid. In this way, we’ll be able to identify 

what's necessary to invalidate a proof and lead us to a false one.  

Broadly, a mathematical proof is a rigorous argument that demonstrates the truth of a 

mathematical statement. It is a logical chain of reasoning that starts from 

premises—statements or facts we assume to be true—and proceeds, step by step, according 

to the rules of logic, until it reaches the conclusion, which is the theorem or result we are 

trying to prove. That is, a mathematical proof consists of: 

1)​ premises  

2)​ logic  

 

Lets understand what both of these are and what they consist of: 

 



 

Premises are our building blocks for a proof. They consist of axioms - fundamental truths 

that are accepted without proof, they are like the rules of the game of mathematics, we set 

them as our groundwork and work our way up; definitions and previously proven theorems. 

For example, consider proving the Pythagorean theorem. The premises include: 

-​ The definition of a right-angled triangle. 

-​ Axioms of Euclidean geometry (e.g., the parallel postulate). 

-​ Any previously proven theorems that might be needed, such as the theorem that the 

sum of angles in a triangle is 180 degrees. 

Logic is the framework that binds these premises together. In a way, we can see logic as the 

current that flows between sound premises together in a way that leads us from point A to 

point B where point A is all of the things we have thus far established to be true in 

mathematics (all of our existing premises) and point B is the conclusion of the theorem we 

are currently considering. There are several types of logical frameworks that can be used in 

mathematics. To give just a few examples consider: 

1.​ Direct reasoning: This involves moving from premises to a conclusion by a 

straightforward application of logical rules. A good example for direct reasoning is 

transitivity which basically says that if (1) leads to (2) and (2) leads to (3) then (1) 

leads to (3).  

 

2.​ Proof by contradiction: This involves assuming that the statement we are trying to 

prove is false and showing that this leads to a contradiction. Therefore, the statement 

must be true. For example, let's assume that I know that (1) sunflowers and peonies 

are of two different colours and (2) sunflowers are yellow. We’ll use a proof by 

contradiction to show that peonies are not yellow:  

We’ll suppose, for the sake of contradiction, that peonies are yellow. 

Sunflowers and peonies are two different colours, so from this we can derive 

that sunflowers aren't yellow. Contradiction! Therefore, it must be the case 

that peonies aren't yellow.  

 

 



 

3.​ Inductive reasoning: In a proof by induction, we show that (1) a statement is true for 

an initial case (a natural number) and then (2) prove that if it is true for all natural 

, it must also be true for . This allows us to conclude that the statement is true 𝑘 < 𝑛 𝑛

for all natural numbers greater than our initial case. The reason for why this works is 

that we create a sort of “chain of truth” wherein we’ve proven the base case is true in 

(1), so from (2) the statement is true for the next number and so on forth. An example 

for a proof by induction can be found in the next part of my essay. 

 

After all of this somewhat tedious discussion about what mathematical definitions and proofs 

really are, we’re finally ready to answer the question: so, how do you create a false proof? 

Well, if for a proof to be sound it needs true premises and valid logic - for a proof to be false, 

it needs to have false premises or invalid logic. What this means is quite simple: our recipe 

for creating false proofs consists of either including false premises in our proofs - basing 

ourselves off of things that are mathematically false (say, 1=2), or using invalid logic (say, 

inferring a conclusion that would only be true in certain cases and generalizing it). Obviously 

though, here comes the tricky bit. 

 

Psychology of false proofs 

 

Given that mathematics is the most rigorously taught of all subjects and that, on some level - 

even if only that of intuition, we’re all aware of what I explained above (aka the need for true 

premises and valid logic), the question is begged - why do we fall for these false 

mathematical proofs? Why are we stumped when we see barely ten lines leading to the 

clearly absurd conclusion that 1=2? Sure, it's a question of involving a false premise or 

invalid logic somewhere, but we obviously wouldn't fall for a 1=2 appearing in the middle of 

a proof right? Herein lies the true art of false proofs - hiding and masquerading what in 

another light would be to us irrefutably false through clever manipulations - whether they be 

semantic, algebraic or other. In this section of the essay I'll consider a couple of what I've 

identified to be the systematic causes for why we let slip false mathematical manipulations 

 



 

and I'll draw out some broad mechanisms to categorize false proofs based on these cover-up 

techniques.  

 

Wrongly taught 

 

I'd like to start with what I see as the simplest, most obvious, and also probably most 

avoidable reason for why we fall for false proofs. Put plainly, sometimes maths is just badly 

(or insufficiently) taught and that leads us to let things fall through the cracks. I’d like to look 

at what i consider to be a really simple and deceptive example that encompasses a lot of the 

trickiness embedded in the task of teaching maths sufficiently well for it to not lead to logical 

inconsistencies, but at the same time be accessible enough that seventeen year olds can 

understand it.  

 

Consider the following (false) proof that : 1 =− 1

 

 1​ = 1 = (− 1) · (− 1) = − 1 · − 1 = 𝑖2 =− 1

 

To the eye of the unsuspecting high school student who was taught that , nothing 𝑖 = − 1

here seems problematic and it is in fact unclear what in this (tiny!) proof that leads to the very 

obviously wrong conclusion that 1=-1 is off. Maybe some would answer that it is that the 

arithmetic manipulation of multiplicity that says that  does not hold for the 𝑎𝑏 = 𝑎 · 𝑏

realm of complex numbers, but that seems a little bit like cheating. It doesn't provide any 

deep reason as to why the reasoning is wrong and if anything is more consequence than 

cause. That is, this rule does not hold for the more inherent reason that we have yet to 

discover, not the other way around.  

Another important note that I’d like to make here is that if we notice that a certain rule does 

not hold for a mathematical function when we expand its scope of definition (so as we did 

here by expanding the square root as an operation that could function on negative numbers in 

addition to non-negative ones), thats an indication that we cannot expand the definition. The 

reason here is quite simple. If we have a mathematical function, we want it to be consistent. 

 



 

Otherwise we can't really do much with it, we can't mix real and complex numbers as they 

dont have the same properties for that function, and in general things get quite messy. It is not 

necessarily the case that properties of functions must be consistent over different fields, but it 

would definitely make sense for that to be the case and thus should be a good intuition check 

for the validity of our definition.  

Hopefully, the feeling that you're starting to get by this point is that there’s something off 

with the well-known definition of  as .  𝑖 − 1

Let’s remember how the square root function is defined:  

the square root of a number a is the positive solution to the equation   𝑥2 = 𝑎.

That is, seemingly,  would be the positive solution to the equation (remember from 𝑖 𝑥2 =− 1 

above that it cannot just be “the solution to the equation” as there would be two such 

possibilities and the square root would not be well-defined, thus the positivity requirement is 

necessary). But what does it mean for a number to be positive? This is a little beyond the 

scope of my essay, but put briefly, for a number to be positive it must belong to an ordered 

field (a special type of set) that is ordered for some order relation ‘>’. I wont get into the 

definition of an ordered field, or an order relation, but one of the notable properties we can 

derive from these definitions is that all numbers in an ordered field must obey 𝑥 ≠ 0  

 for our special “order relation”. However,  and using our definitions for an 𝑥2' > '0 𝑖2 =− 1

ordered field we can also prove that , no matter what our field is. Thus, the field 0' > ' − 1

of complex numbers cannot be an ordered field. This leads us to the inevitable conclusion 

that there can be no notion of “positivity” in the field of complex numbers. From this 

problematic initial setup we’ll be able to derive countless false results, as in fact, the classic 

definition of as the square root of -1 is not well defined. Notice also that it makes perfect 𝑖 

sense that one of these such results is of the form “ ” as the problem in our definition 1 =− 1

was one of lack of uniqueness (there is no meaningful way to distinguish between and .) 𝑖 − 𝑖

 

 

 

 



 

Lack of Rooting in Reality 

 

You (the reader) and I (the writer) can all clearly form strong intuitions around the concepts 

of integers or euclidean geometry because we can translate   to a reality of having  𝑛 ∈ 𝑁 𝑛

apples or an equilateral triangle to drawing three connected lines of equal length on a page. 

The same, however, cannot be said for certain mathematical concepts such as infinity, 

higher-dimensions and complex numbers that have no (or no obvious) rooting in our lived 

reality.  Herein lies the second of what I've identified to be the prominent reasons for why we 

fall for false proofs. That is, our struggle to comprehend and relate to abstract concepts that 

are not rooted in our tangible reality. This detachment can lead to misunderstandings and the 

acceptance of incorrect conclusions, as we may not fully grasp the implications or nuances of 

these concepts. 

 

On a holistic level, the reason for why we have a harder time catching fallacies and false 

manipulations when dealing with abstract ideas is that we can’t rely on our intuition to follow 

and “fact-check” proofs when we read them and therefore we can only rely on the abstract 

rules of the abstract concepts. This means that our only way of detecting a false manipulation 

in the steps of the proof is through rigorously making sure each step of the proof adheres to 

the definition of the concepts we’re dealing with, and not through a broader understanding of 

why something may be wrong.  

 

To give an illustration, consider a proof wherein I (falsely) divide a number by zero. I have a 

basic intuition of what division and zero are so it's likely that I look back and feel something 

is wrong. The reason I can do this is because through applying my understanding that 

dividing m by n means taking m objects and dividing them to n people, trying to divide m 

objects to 0 people immediately seems weird. I could say each person gets 0 objects because 

there are 0 people but through that same principle, I could give any amount of the m objects 

to “each person” and it would be the same. Thus, without even the rigorous definition of 

division and the principle of not dividing by 0, I'm able to detect that something’s wrong 

through my understanding that a definition must be unique. The problem arises when the 

same process of using our intuition of concepts to “fact-check” a proof can't really be used 

because we have no tangible intuition of the concepts we’re dealing with.  

 



 

Let’s get a little more concrete. Consider the following proof that  that I’m 
𝑛=0

∞

∑ (− 1)𝑛 = 1
2

unfortunately certain many of you have seen before: 

 

We’ll denote  𝑆 = 1 − 1 + 1 − 1 +...

We can notice that:  𝑆 = 1 − 𝑆

Therefore:  2𝑆 = 1 ⇒ 𝑆 = 1
2

That is:   1 − 1 + 1 − 1 +... = 1
2

 

However, this is obviously wrong given that this series just oscillates in the values it takes (

 is 0 when k is odd and 1 when k is even) and doesn't even converge - it being 
𝑛=0

𝑘

∑ (− 1)𝑛

equal to  is clearly absurd.  1
2  

I know that there exists countless “proofs” of this theorem on the internet, along with ones of 

the even more absurd result  that try to convince us that this 
𝑛=1

∞

∑ 𝑛 = 1 + 2 + 3 +... = −1
12

is in fact true, and specifically they cash in on the fact that the notion of infinity and infinite 

sums is beyond the grasp of our intuition to convince us that even if it seems unreasonable, 

“the math says it, so it's true”.  

Where this “proof” goes wrong is in fact quite simple, it assumes the existence of  (the sum 𝑆

of the series) without proving it exists. That is, it assumes there exists a finite number  𝑆 ∈ 𝑅

such that , whereas this is in fact not only not trivial, it's completely 1 − 1 + 1 − 1 +... = 𝑆

wrong. So, sure, were this  to exist then all the manipulations on it are valid and it would in 𝑆

fact have to be equal to  but it existing is a huge “if.” In fact, we can be certain that it 1
2

doesn't exist as such an  would defined to be 𝑆

 



 

which is clearly a limit that does 
𝑘 ∞
lim
→ 𝑖=0

𝑘

∑ (− 1)𝑘 =
𝑘 ∞
lim
→

0 {𝑖𝑓 𝑘 𝑖𝑠 𝑜𝑑𝑑},  1 {𝑖𝑓 𝑘 𝑖𝑠 𝑒𝑣𝑒𝑛}  

not exist. The reason we’re so confused by this is that in finite sums we don’t need to prove 

existence for sums, it's implicit. Herein comes to play the idea of our lack of ability to 

intuition check when it comes to abstract ideas in mathematics, because infinity is such an 

unconcrete concept idea to us - the closest we have when it comes to forming intuitions about 

infinite sums is how we work with finite ones - which turns out to be completely misleading.  

To illustrate just how non-trivial the idea of existence of a result is, I’ll bring to you another 

false proof from a completely different context that has the exact same fallacy as the one 

above. We’ll prove that 1 is the greatest natural number (I don't think there’ll be much 

controversy in saying that this one is definitely false):  

Let  be the greatest natural number.  𝑛

Given this property of , it is necessarily the case that .  𝑛 𝑛2 ≤ 𝑛

Thus .  𝑛(𝑛 − 1) ≤ 0

We can thus conclude that  0 ≤ 𝑛 ≤ 1

is natural so  𝑛 𝑛 = 1

Hopefully this proof makes it clear why we must prove the existence of a solution before 

claiming to find it. In many cases this requirement is trivial (for example, a finite sum always 

sums up to a finite number - we just need to find it, not prove it exists) which is why we can 

be led to think it's not a necessary step of finding a solution.  

But the above proof for the oscillating sum is not an outlier. To illustrate how incredibly 

unreliable our intuition can be when it comes to the concept of infinity and infinite sums, I’d 

like to present two really interesting results:  

1)​ This first is a theorem called the Riemann Rearrangement Theorem that says the 

following: We’ll define a series to be “conditionally convergent” if it converges, but 

the series of its absolute values diverges.  

 



 

Put mathematically we’ll define  as “conditionally convergent” if  
𝑖=0

∞

∑ 𝑎
𝑖

𝑖=0

∞

∑ 𝑎
𝑖

converges (it has a limit) but  diverges (it goes towards infinity). 
𝑖=0

∞

∑ 𝑎
𝑖| |

The theorem states that given any conditionally convergent series, for all real numbers 

, there exists a rearranged order of the series such that the rearranged series 𝑥

converges to x. Let's consider a simple example to unpack this theorem: 

 
𝑛=1

∞

∑ (−1)𝑛

𝑛 = 1 − 1
2 + 1

3 −...

This series is conditionally convergent because whilst the series itself converges to 

, the series of absolute values diverges (I won't include the proof here but I 𝑙𝑛(2)

invite you to look this up in the below resources on the harmonic series). 

Now, suppose we want the series to sum to a different number, say 3. To achieve this, 

we can rearrange the terms so that the positive terms dominate initially, pushing the 

partial sums closer to 3, and then gradually include enough negative terms to stabilize 

the total at 3. Specifically, we could group the terms to first sum many positive 

contributions until the partial sum exceeds 3, and then balance it by adding enough 

negative terms to bring it back toward 3. By carefully repeating this process, the 

rearranged series will converge to 3. 

The key idea in this theorem is that the positive terms and negative terms each "pull" 

the sum in opposite directions. Since the series is conditionally convergent (its 

absolute values diverge), you can exploit this property to "steer" the total sum toward 

any target that you choose. 

The bottom line here is that the commutative property of addition that we’re so used 

to that says that  (that is, we are allowed to reorder the elements in a 𝑎 + 𝑏 = 𝑏 + 𝑎

sum) does not hold true for infinite sums! 

 

2)​ The second thing I'd like to consider in terms of how unreliable our intuition is when 

it comes to infinite sums is the idea of brackets in a sum. We’re all familiar with 

 



 

associative property of addition that says that . In fact, (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐)

it's so elementary to us that you probably didn't even think of this as a “special 

property” of real numbers before, it's just a manipulation you do naturally. However, 

let's consider the above series:  and look at two possible bracket 1 − 1 + 1 − 1 +...

placements: 

I.​   (1 − 1) + (1 − 1) +...

II.​  1 − (1 − 1) − (1 − 1) −...

both of these placements are seemingly equivalent to our original series  
𝑛=1

∞

∑ (− 1)𝑛

but notice that I. = 0 whereas II. = 1! The necessary conclusion here is that when it 

comes to infinite sums we cannot just naively apply associativity as we would with 

finite sums, even though our intuition begs us to believe that the order of addition 

(this is what’s being changed under bracket placement) should have no effect on our 

result. 

To tie all this back to our discussion on false proofs, notice just how easily we could have 

misused either one of these properties to create all sorts of absurd results. The examples 

above showcase just how fragile our intuition can be when we extend mathematical 

properties from the finite to the infinite. What feels like a natural extension of basic rules - be 

it the commutativity of addition or the reliability of grouping terms - can break down in 

surprising and counterintuitive ways when faced with infinity. This dissonance between our 

finite-based intuition and the abstract, unconcrete nature of infinity lies at the heart of why so 

many false proofs feel convincing. 

 

A General Rule With Exceptions  

 

Let's consider the following (obviously false) theorem: All people have the same eye color. 

Proof by induction:  

 



 

The statement "All members of any set of people have the same eye color" is clearly 

true for any empty set (if there are no elements in a set, any statement is true for all of 

those elements regardless of what it is). 

Now, assume we have a set 𝑆 of people, and the inductive hypothesis is true for all 

smaller sets. Choose an ordering on the set, and let  be the set formed by removing 𝑆
1

the first person in the ordered set, and  be the set formed by removing the last 𝑆
2

person in the ordered set. 

All members of  have the same eye color (by the induction hypothesis), we’ll call it 𝑆
1

, and so do those of , we’ll call this color . However, ∩  has members from 𝑥 𝑆
2

𝑦 𝑆
1

𝑆
2

both sets, we’ll choose one of these members. Its eye color is both x and y and as a 

person has a unique eye color, . Thus, all members of 𝑆  must have the same eye 𝑥 = 𝑦

color. □ 

 

The problem with this proof lies within the phrase: “However, ∩  has members from 𝑆
1

𝑆
2

both sets, we’ll choose one of these members”. Let's think about it a little more deeply. 

Whilst for most sets this seems like a reasonable statement - taking off one member from two 

common sets should leave common ground, this is very much not the case for our edge cases. 

That is, for all sets with at least three elements it is true that taking two subsets of that set, 

each being the set minus one member, the subsets contain at least one member in common as 

there are enough members that removing one leaves common ground - for sets with one or 

two elements this won't be the case. Consider a set with one element. By any ordering the 

first and last element will be the same and therefore the subsets  and  will both be empty 𝑆
1

𝑆
2

sets - such that they have no common member. Herein lies the flaw that breaks the logical 

chain of the above argument - because an inductive proof works as a sort of chain wherein 

the truth of the statement at each stage requires the truth of the links beforehand, this odd case 

to the rule for sets with one or two elements is enough to render the claim void for all non 

empty sets.  

 

We can visualize inductive proofs a little bit like a tall tower of thin blocks stacked one on top 

of the other (with block n representing the truth of the hypothesis for n) such that when we 

pull out one block - all those on top of it will consequently fall out. What this means is that 

 



 

the combination of a rule with an exception and proof by induction is pretty much a lethal 

recipe for a false proof. Whilst its true that many times edge cases that are false wherein a 

general rule is true aren't usually too problematic and we tend to forget them, when we’re 

using proof by induction, the proof of each consequent stage is dependent on the one before 

such that its enough for a single such “edge case” to be false for our entire theorem to be 

false.  

 

Another really great example for a general rule with exceptions being a good way to form 

false proofs is the false proof I brought in the intro that “shows” that 1=2. We saw that the 

logical error in this proof was that when we divided both sides of our equation by  this 𝑎 − 𝑏

was in fact invalid as was equal to . The reason that we were able to get away with 𝑎 − 𝑏 0

this at first glance is that dividing both sides of an equation by a number  is allowed for all 𝑛

values of except for 0. That is, we have a rule that is true almost always, infinitely so, 𝑛 

except for in one case. This can make us careless in applying the rule, forgetting that there 

exists that one case wherein that thing that seems so trivially valid is in fact completely 

problematic.  

 

Notation 

 

Let’s look at what I consider to be quite a neat false proof claiming that 0=1.  

 

Proof: 

Let’s consider the integral  ∫ 1
𝑥𝑙𝑜𝑔𝑥 𝑑𝑥

we can integrate by parts where u’=  and v=  so u=  and v’= : 1
𝑥

1
𝑙𝑜𝑔𝑥  𝑙𝑜𝑔𝑥 −1

𝑥·𝑙𝑜𝑔2𝑥

the formula for integration by parts is:  ∫ 𝑢'𝑣𝑑𝑥 = 𝑢𝑣 − ∫ 𝑢𝑣'𝑑𝑥

that is:  ∫ 1
𝑥𝑙𝑜𝑔𝑥 𝑑𝑥 = 1 + ∫ 1

𝑥𝑙𝑜𝑔𝑥 𝑑𝑥

we’ll subtract   from both sides and we’ll be left with: 0=1  □ ∫ 1
𝑥𝑙𝑜𝑔𝑥 𝑑𝑥

 



 

 

What's wrong with this proof actually just lies within the very last line, “we’ll subtract  

 from both sides”. To understand why, let's remember a few important things about ∫ 1
𝑥𝑙𝑜𝑔𝑥 𝑑𝑥

indefinite integrals. Before I get into a formal rundown of what this proof gets wrong, we’ll 

form a good intuition. As every high school maths teacher has certainly ceaselessly drilled in 

their students minds, when we write out an indefinite integral we must always remember the 

constant representing the fact that an integral is insensitive to a displacement of a function 

along the y axis. That is  and not just . What this therefore means for ∫ 𝑥𝑑𝑥 = 1
2 𝑥

2
+ 𝐶 1

2 𝑥
2

our previous equation is that  where  and  are the constants of both integrals 1 + 𝐶
1

= 𝐶
2

𝐶
1

𝐶
2

respectively. (Note, that's not to say that  and  represent two numbers whose difference is 𝐶
1

𝐶
2

1 and they’re the fixed constants of the integrals. I just wanted to illustrate that the constant 

can be different for both, thus why we get a difference of 1. What I'm saying here is messy, 

but trust me it's just to form an intuition, I'll get to the rigorous rundown in a second.) 

Hopefully you can start to see from here that because integrals can be differentiated up to a 

constant, the fact that we get a “+1” isn't too problematic as 1 is in and of itself a constant.  

 

That being said, all our steps in the proof were quite rigorous, why would subtracting cause a 

problem? To understand this, let's get a little more formal.  

 

The reason why we can't subtract the integral from both sides is that the subtraction operation 

treats the indefinite integral as an algebraic quantity that can be canceled out, like a number 

or a variable. This assumption fails to consider that integrals represent families of functions 

differing by constants, or put more formally - sets. So, taking into consideration the 

uniqueness theorem for integrals that states that the primitive functions of a continuous 

function can only differ by a constant,  is actually equivalent to ∫ 1
𝑥𝑙𝑜𝑔𝑥 𝑑𝑥

 where g is some primitive function of . Once we’ve 𝑆 = 𝑔(𝑥) + 𝑐 | 𝑐 ∈ 𝑅{ } 𝑓(𝑥) = 1
𝑥𝑙𝑜𝑔𝑥

established this, let's reconsider the right hand side of the equation. We have 

 . But what does  mean? How can we add a number to a set  1 + ∫ 1
𝑥𝑙𝑜𝑔𝑥 𝑑𝑥 = 1 + 𝑆 1 + 𝑆

 



 

given that they’re two different algebraic structures? The answer here is obviously that we 

can’t. This  is once again our way of simplifying the story. If we think about what 1 + 𝑆

we’re trying to say, we want 1 to be added to each one of the primitive functions S contains. 

Thus, . However, that's the exact same thing as 1 + 𝑆 = 𝑔(𝑥) + 𝑐 + 1 | 𝑐 ∈ 𝑅{ }

, given that both simply take  and add to it every real constant possible. 𝑔(𝑥) + 𝑐 | 𝑐 ∈ 𝑅{ } 𝑔

 

 Thus,   is not contradictory at all, in fact, it's entirely trivial!  ∫ 1
𝑥𝑙𝑜𝑔𝑥 𝑑𝑥 = 1 + ∫ 1

𝑥𝑙𝑜𝑔𝑥 𝑑𝑥

 

Our source of confusion stems from our notation which aims to simplify things for us but 

ends up letting loose through the cracks the real nature of an indefinite integral as a set, thus 

making us think we can simply “subtract” it from both sides as we would with numbers.  

 

Let’s look at another example wherein notation is misused to lead us to a false conclusion. 

Consider the following proof that 0=1: 

 

Notice that:  𝑥 = 1 + 1 +  ... + 1 {𝑥 𝑡𝑖𝑚𝑒𝑠}

 

We’ll take the derivative:  1 = 𝑑
𝑑𝑥 𝑥 = 𝑑

𝑑𝑥 (1 + 1 +... + 1) = 0 + 0 +... + 0 = 0

□ 

 

This is such a classic example of how misleading our writing can be in maths and underlines 

really clearly how deceptive notation can easily gloss over the true meaning of a term. There 

are actually two big problems within this proof.  

 

The first lies in the statement “ ”. Notice that this doesn't 𝑥 = 1 + 1 +  ... + 1 {𝑥 𝑡𝑖𝑚𝑒𝑠}

even really make sense. We define addition of n terms for a positive whole  but what would 𝑛

it even mean to add  terms (in this case  1s) if  isn't a whole number? Or not even 𝑥 𝑥 𝑥

rational? In this way the notation of  as a sum of  ones is inherently faulty because addition 𝑥 𝑥

is defined only for discrete numbers. For the concept of “non whole number addition” we 

have multiplication and the intuition may certainly be adding a set of units a certain amount 

of times but this  is certainly wrong. Given that derivatives 𝑥 = 1 + 1 +  ... + 1 {𝑥 𝑡𝑖𝑚𝑒𝑠}

are taken only over derivable functions that must be continuous (intuitively, we can't find the 

 



 

derivative of a function with “holes in it”) the function  that we’re taking the 𝑓(𝑥) = 𝑥

derivative of here must take on non-whole values and thus the first statement is wrong.  

 

The second problem within this proof is simply that it's doing the derivative wrong. It uses 

the property of additivity for derivation that says that if  then 𝑓(𝑥) = 𝑔(𝑥) + ℎ(𝑥)

 but uses this rule incorrectly as it is only true for a constant number 𝑓'(𝑥) = 𝑔'(𝑥) + ℎ'(𝑥)

of additions (and here the number of additions is  - a function and not a constant). We’ll '𝑥'

remember that the definition of a derivative at a point is  . Thus,  𝑓'(𝑥
0
) =

𝑥 𝑥
0

lim
→

𝑓(𝑥)−𝑓(𝑥
0
)

𝑥−𝑥
0

even if we were to accept the notation we just saw was problematic we’d get: 

.  𝑓'(𝑥) =
𝑥 𝑥

0

lim
→

1+...+1{𝑥 𝑡𝑖𝑚𝑒𝑠} − 1+...+1 {𝑥
0
 𝑡𝑖𝑚𝑒𝑠}

𝑥−𝑥
0

=
𝑥 𝑥

0

lim
→

1+...+1{𝑥−𝑥
0 

𝑡𝑖𝑚𝑒𝑠}

𝑥−𝑥
0

= 1

 

If we consider what allowed us to overlook these two slights, it's probably the notation of 

how the proof was presented. We’re used to adding an unknown number of numbers using 

the notation  and thus we ignore the fact that it requires the addition to be for a _ +... + _  

discrete sum. Additionally, the additivity property of the derivative requires that it be for a 

finite number, which is not the case for this “addition”, and yet we overlook it as the notation 

allows us to forget how many terms are being added: it's a constant format of “number” plus 

“numbers” plus “number” and so we’re misled into thinking we can use the well known 

manipulation for derivatives.  

 

Ambiguous Definition 

 

Writing this essay helped me understand that maths has a rather big problem when it comes 

to its language. Inevitably, because it's a game (or an art, or a science - interesting topic of 

discussion but probably too long for this essay) employed by humans - its language has to be 

human language or to become human language. Phrases like “There’s a 50-50 chance”, 

“That idea is derivative”, “it was a random occurrence” or the “the average person” all use 

inherently mathematical concepts for the description of day-to-day occurrences. The problem 

here is that not all humans are mathematicians and so inevitably some of these concepts 

 



 

won’t be used in their correct way, especially given the fact that they have complex nuances 

(so for example, the average individual usually doesn't give much thought to the fact that to 

talk of an average is to first identify a set, decide on a metric of comparison, calculate each 

person's score on that scale and find the mean). 

 

But even if all humans were mathematicians, life is too dynamic, too nuanced and requires 

too many levels of abstraction to ever be a safe playing ground for mathematical terms if we 

wish to keep them intact. Unfortunately, humans are rather bad at sticking things to their 

specific domains and so if we see something in life that reminds us of that thing that we 

defined as randomness - we’ll call it random even if it's only just very hard to predict. The 

bottom line here is that because it is humans who do maths, its language gets intertwined with 

our general lives and this inevitably leads our desirably rigorous mathematical terms to get 

riddled with ambiguous definitions. I’ll give two examples of this below and consider how it 

effectively allows us to create false proofs.  

 

First, let's consider a proof to the theorem that says that a dog has 9 legs: 

 

No dog has 5 legs, 

A dog has 4 more legs than no dog.  

Thus, a dog has 9 legs □ 

 

This false proof is rather simple and it probably didn't take you too long to figure out what 

the problem with it is. However, it underlines a really critical idea. Here, the string of words 

“no dog” is being misused by referring to two completely different things (validly, within the 

context of the English language). The first time no dog appears its meaning is “none of the 

dogs” whereas the second appearance of the phrase no dog refers to “an absence of dogs”. 

These are inherently two different meanings and indeed, if you try and switch up the phrases 

you’ll get them to mean - “an absence of dogs has 5 legs” and “a dog has 4 more legs than 

none of the dogs” - both sentences that barely make sense and definitely aren't true.  Thus, 

each of the statements “no dog has 5 legs” and “a dog has 4 more legs than no dog” are 

individually true but because both “no dog”s aren't the same, we cannot apply the logical 

 



 

structure of transitivity that's currently being used to reach the conclusion “A dog has 9 legs”. 

(If you’re acute you’ll probably also have noticed that the phrase “a dog” is also somewhat 

problematically defined in the above proof). The idea this false proof employs   

The final false proof I'll bring in this essay is by far the most interesting of all the ones I've 

considered whilst researching this topic. I’ll admit that I had a hard time pinpointing why 

exactly it was wrong and I’ll do my best to explain this point given my acquired 

understanding, but in case it's still not clear by the end of my explanation, I invite you to look 

up the resources I attached below about the Berry Paradox that personally helped me 

understand it a lot better.   

 

Let's consider the following proposition: all natural numbers are definable in under eleven 

words. Now, this proposition is clearly wrong. The reason here is that there are infinitely 

many natural numbers and finitely many words in the english language - let’s call this 

number  - so there are  phrases with under 11 words in english. Thus, given that each 𝑥
𝑖=1

10

∑ 𝑥𝑖

phrase can describe at most one number (remember that for something to be well defined, it 

must be unique), it is impossible to define infinitely many numbers in under 11 words.  

 

However, consider the following proof by contradiction for the above proposition: 

Suppose for the sake of contradiction that not all positive natural numbers are 

definable in under eleven words. Then there is a smallest integer 𝑛∈𝑁 which is not 

definable in under eleven words. But this number is 

 the smallest positive integer not definable in under eleven words,  

Therefore, it is definable in ten words. Contradiction! □ 

 

This contradiction is known as the Berry Paradox and underlines the idea of ambiguous 

definitions in a really great way. Let’s dive into it to gain an understanding of where it goes 

wrong.  

 

 



 

In natural languages (languages we use to communicate between one another, like English, 

French, Hebrew etc.) we can create a distinction between two different types of ways to 

attempt to define something:​

 

1)​ Semantic Definitions: 

These are definitions that attempt to define an object based on the meaning of that 

object. For example, defining a pen as “a cylindrical tool containing ink used to write 

on a page” would be a semantic definition of a pen as it attempts to define it through 

its properties.  

 

2)​ Syntactic definitions: 

These are meta-definitions that use properties of expressions, such as the number of 

words in a phrase, alphabetic combinations and more to define an object. An example 

for this would be as in the paradox “the smallest positive integer not definable in 

under eleven words” as we are defining this number not through its mathematical 

properties, but rather through linguistic properties. 

 

Within the context of natural languages these are both valid ways to define and object as we 

would be able to understand what the definition was referring to in both cases. However, in 

formal systems, this is problematic because natural languages allow expressions (namely, 

syntactic definitions) to serve two roles: they act as both objects within the language and 

syntax defining the language. This lack of separation creates self-referential ambiguity that 

makes it such that terms are not well-defined.  

That is, the problem within the above proof lies in this definition which is simply not valid in 

the context of mathematics. A phrase like this cannot be a definition in mathematics as in a 

formal system expressions cannot simultaneously be objects of the language, as well as valid 

syntax of the language. The act of defining “the smallest positive integer not definable in 

under eleven words” makes the definition itself become part of the system it is trying to 

evaluate.  

If you’d like to picture a little more concretely what in this definition is problematic, I invite 

you to think of it like a recursive code. When we say, "the smallest positive integer not 

definable in under eleven words," let’s focus on the word “definable.” To say something is 

 



 

“definable” means that a valid definition for it exists. So, to evaluate this phrase, we need to 

examine the set of “all possible definitions”. However, the phrase itself - "the smallest 

positive integer not definable in under eleven words" - is a definition. This means it is a 

member of the set we’re evaluating. Thus we’re led back to it and we need it to be defined in 

order to define it! We’ll zoom into it again (as is necessary to understand what it refers to) 

and go through this process indefinitely in a way that creates an infinite recursion.  

If we want to be rigorous and tie this back to our discussion on valid and invalid 

mathematical definitions we can identify the criteria missing here as that of existence. This is 

like writing a recursive function without a base case - it calls itself indefinitely without ever 

resolving to a concrete value, we never ground into an actual object, thus we’re defining 

something that does not exist.  

 

Conclusion 

In the introduction to this essay I reflected on one of the aspects to what makes false proofs 

so captivating: the fact that mathematics is a perfect system. False proofs thrive on this 

premise - they challenge us to identify where our own logic has faltered, providing a thrilling 

puzzle whose solution reinforces the perfection of mathematics. 

But is mathematics truly perfect? Throughout this essay, I’ve explored how false proofs 

expose subtleties in our logic, language, and intuition, but maybe there’s something 

incomplete about mathematics itself? While some false proofs stem from simple missteps, 

others point to something deeper - mathematics’ own limitations.  

I’d like to end this essay with one final false proof, probably the coolest “circus trick” I hold 

in my arsenal that I'll flourish for my grand finale. This proof will also help us consider the 

limitations of mathematics as a system.  

 

Let's look at the following proof of Riemman’s hypothesis: 

 

Consider the following three statements: 

​

 ​ (1) At least one of the following statements is true 

 



 

 

(2) The above statement is false 

(3) Riemann’s hypothesis is true 

 

If (1) is true, then (2) cannot be true and thus, by (1), (3) is true.  

Else, (1) is false and thus none of the below statements are true (otherwise (1) would 

be true) and thus (2) is false  (1) is true. Contradiction!  ⇒

 

Thus, it must be the case that (1) is true and Riemann’s hypothesis is true! 

 

Before you get all excited, unfortunately, no, we did not just prove one of the greatest 

unsolved theorems in mathematics today. What’s going on here is an exemplification of 

Tarski’s Undefinability Theorem, which states that the truth of a statement cannot be 

defined within the same system that expresses it. Simply put, a statement like “This statement 

is false” is not valid in mathematics and will necessarily result in a contradiction. In the 

context of this proof: statement (1) tries to "define" the truth of (2) and (3), but (2) refers back 

to (1), making the system self-referential. This circular dependency leads to an inability to 

assign consistent truth values, illustrating the fundamental limitations of expressing "truth" 

within a system. 

(Maybe you’ll have noticed that the fallacy in Berry’s Paradox I explained above boils down 

to exactly the same idea expressed here. I won’t go into this in depth but I invite you to 

ponder this idea.) 

Gödel’s incompleteness theorems and Tarski’s undefinability theorem deepen this insight. 

Gödel showed that no sufficiently powerful system can prove all truths about itself, and 

Tarski revealed that truth itself cannot be fully captured within the system. Together, they 

demonstrate that mathematics, for all its elegance and rigor, has boundaries it cannot surpass. 

The false proof of the Riemann Hypothesis exemplifies this beautifully.  In essence, the 

problem in this false proof is not really due to our own limitations and misunderstanding, but 

rather fundamentally because mathematics is not a perfect system. Its flaw exposes how 

self-referential statements disrupt the illusion of a complete, self-contained system. In this 

 



 

way, mathematics mirrors the paradoxes of human thought - it is both a tool of unparalleled 

precision and a discipline constrained by the limitations of logic and language. 

I’ll let you (the reader) choose on what note you leave my essay. Maybe you’ll have read it as 

an enjoyable presentation of the “behind the scenes” of a magician's impressive tricks. Maybe 

you’ll have read it as an exploration of the dichotomy of imperfectness, the back and forth 

between where our own logic fails and why, and where the system fails and why. In either 

case, I hope you’ve enjoyed the show! 
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