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Greek salads, food waste, and why tomatoes are 
most filling in five dimensions (and cucumbers in six) 
 

Introduction 
Picture this - you are a taverna owner in Greece, minding your day, and you are suddenly 
approached by a couple of 70-dimensional beings, Yianni and Maria, who ask for one 
simple thing – a Greek salad fit for their 70D stomachs. Now naturally, as they’re 
reasonable people they give you the contacts of a supplier of the necessary ingredients 
in 70D, and since you’re no novice and have quite the number of culinary exploits under 
your belt, preparing the salad itself will prove no problem for you, but where you’re really 
struggling is knowing how much to order – after all how filling even is a single 70-
dimensional vegetable? 

Your first order of business is to look through the ingredients and decide how to model 
the volume of each one, for trying to visualise what an actual tomato shape would look 
like in 70D is too much even for your prodigious brain. The following is what you decide: 

 

Ingredient Model 
Tomatoes Modelled as a hyperball1 of radius 1 meter 
Cucumbers Modelled as a hypercylinder of sorts, where a cross 

section of an (n-1)-ball of radius 1 meter is extended 10 
meters in the nth dimension. 

Feta cheese Modelled as a hypercube of side length 0.5 meters 

Peppers, Onions, Olives Modelled as tomatoes 
Olive oil, Oregano, Salt Modelled as out of stock 
One portion Modelled as 1 cucumber, 10 tomatoes and 10 blocks of 

feta 
 

It might also be worth mentioning that volumes will be treated purely numerically, and 
the differences between a meter to the nth power and a meter to the (n-1)th power will not 
be explored, so if the numbers derived at the end seem ridiculous, that is in part 
because they will be.  

 
1 The prefix hyper- generalises things to any number of dimensions, while putting some specific number 
(or n) in front of an object or concept specifies that exact number of dimensions (e.g. a 3-ball is just a ball, 
and a 2-ball is a disc) 
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A meander through familiar dimensions 
Now, since jumping straight to 70 dimensions seems quite the leap, let us start by trying 
to build an intuition for how volume works in dimensions we can comprehend as well as 
what our models mean, and then extending that to the fourth and higher dimensions in 
an attempt to find a more general formula. 

Before even starting with the first dimension however, it is helpful to start by defining 
what is meant by an n-ball, an n-cube, and even an nth dimension. Let’s start with the 
latter – an n dimensional space can be viewed most simply as a place where each point 
or vector has n different components, where you could imagine n different axes, all 
mutually perpendicular, that each independently determine one component. An n-cube 
is then a shape with equal edge lengths, right angles in every dimension, and 2ⁿ 
corners, similarly to how a square works in 2 dimensions or a cube in 3. Fortunately for 
our strained restauranteur, the area of an n-cube is exceedingly simple to obtain, as it is 
just the side length to the nth power. Where things get interesting however is the n-ball, 
which can be defined as the area encompassed by the locus of points at some given 
distance from the centre, or by the equation 𝑥12 + 𝑥2

2 + 𝑥3
2 +⋯+ 𝑥𝑛−1

2 + 𝑥𝑛
2 ≤ 𝑟2, 

something both easier to deal with analytically, and easier to comprehend intuitively 
than what equidistance means in dimensions higher than the third. Unfortunately the 
hypervolume of this is not quite so easy to figure out, so let’s embark on an inter-
dimensional journey. 

Starting with the first dimension, this consists of just one axis, so our 1-tomato has as 
its boundary two points, each at distance one meter from some centre (for our 
purposes the origin), as can be seen below2: 

 

Since it’s one dimensional, its hypervolume is just a length, 2. 

 

 

 
2 Thanks be to Desmos for its comprehensive and easy to use graphing tools 
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Moving onto two dimensions, we now have a second axis, and the new equation  
𝑥2 + 𝑦2 ≤ 1, which yields the following: 

                                                                  

Now this is a tomato with a much more difficult to calculate hypervolume (also known 
as area in the two dimensional case). Though we could simply remember the formula 
for an area of a circle (since that is what this strange shape in fact is), we’re looking to 
glean insight into how we might extend this to dimensions we cannot visualise, so let’s 
try another way. Envision one small sliver of the height of this 2-tomato, taken with 
some very small width dx such that we can imagine it to be a rectangle. As 𝑥2 + 𝑦2 ≤ 1, 

for any x, 𝑦 = √1 − 𝑥2, so the height of this rectangle is twice that and its area is 

2√1 − 𝑥2 times dx, and summing all of those rectangles from the boundaries of the 
circle −1 ≤ 𝑥 ≤ 1, we get: 

∫ 2√1 − 𝑥2𝑑𝑥
1

−1

 

Which we can solve with a substitution of 𝑥 = sin(𝑢). 

2∫ √1 − 𝑠𝑖𝑛2(𝑢)cos⁡(𝑢)𝑑𝑢

𝜋
2

−
𝜋
2

 

= 2∫ √𝑐𝑜𝑠2(𝑢)cos⁡(𝑢)𝑑𝑢

𝜋
2

−
𝜋
2

 

= 2∫ cos2(𝑢)𝑑𝑢

𝜋
2

−
𝜋
2

 

And since the antiderivative of cos2(𝑢) is 𝑢
2
+

sin(2𝑢)

4
 we can evaluate this at the bounds: 

2 [
𝑢

2
+
sin(2𝑢)

4
]
−
𝜋
2

𝜋
2

 

=⁡
𝜋

2
+ 0 − −

𝜋

2
− 0 

= 𝜋 
And after all that we’ve managed to get an answer that confirms our usual formula for 
finding the area of a 2-tomato, 𝜋𝑟2. 
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Now moving up yet another dimension, we can do much the same thing, except this 
time we take a 2-tomato shaped slice of our 3-tomato: 

 

Now using the formula for the area of a 2-tomato 𝜋𝑟2, and the fact that the radius of any 

such bar will be √1 − 𝑥2, since this time 𝑥2 + 𝑦2 + 𝑧2 ≤ 1, but the radius we are looking 

for is√𝑦2 + 𝑧2. Thus the area of any such small disc formed over a small width dx will be 
𝜋𝑟2⁡times 𝑑𝑥, which we can sum up between the bounds for x as: 

∫ 𝜋√1 − 𝑥2
2

𝑑𝑥
1

−1

 

= ∫ 𝜋 − 𝜋𝑥2𝑑𝑥
1

−1

 

= [𝜋𝑥 −
𝜋𝑥3

3
]
−1

1

 

= 𝜋 −
𝜋

3
− −𝜋 − − −

𝜋

3
 

=
4𝜋

3
 

Which is, again, the result expected for our 3-tomato based on the pre-existing formula 
4

3
𝜋𝑟3.  

Here it seems natural to interject that in any number of dimensions, the unit n-ball can 
be scaled up to an n-ball of any radius by stretching it by factor r parallel to each axis, 
since each such stretch affects only that one dimension and no other. This means that 
an n-ball of some radius r has a volume of 𝑟𝑛𝑉𝑛(1) where 𝑉𝑛(𝑥) is the volume of a ball in 
n dimensions of radius x. 

Now we could continue in this manner, perhaps thinking up some ingenious way of 
depicting a fourth dimension, with a ball of changing radius through time or some other 
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graphical means, and then repeating this same method of taking the cross section 
which we’ve already found a formula for and integrating across the new axis on and on 
until we get to 70 dimensions. But we wouldn’t want to keep Yianni and Maria hungry, so 
we’ll have to think of a more efficient method.  

 

A formula for the n-tomato 
Let’s start by taking an n-tomato. Let’s look at its cross section when cut by a 

hyperplane, which will be an (n-1)-tomato of radius √1 − 𝑥2 for some small width over 
the nth dimension 𝑑𝑥 so we can represent this as: 

∫ 𝑉𝑛−1(
1

−1

√1 − 𝑥2)𝑑𝑥 

But we’ve shown that 𝑉𝑛(𝑥) = 𝑥𝑛𝑉𝑛(1) so we can put this in terms of a unit (n-1)-tomato 

∫ 𝑉𝑛−1(
1

−1

1)√1 − 𝑥2
𝑛−1

𝑑𝑥 

= 𝑉𝑛−1(1)∫ √1 − 𝑥2
𝑛−1

𝑑𝑥
1

−1

 

This is an even function due to the 𝑥2 so we can change up the bounds a bit. 

2𝑉𝑛−1(1)∫ √1 − 𝑥2
𝑛−1

𝑑𝑥
1

0

 

Now we can substitute in 𝑢 = 𝑥2, so that 𝑑𝑥 =
𝑑𝑢

2𝑥
=

𝑑𝑢

2√𝑢
. 

𝑉𝑛−1(1)∫ 𝑢−
1
2√1 − 𝑢

𝑛−1

𝑑𝑢
1

0

 

= 𝑉𝑛−1(1)∫ 𝑢−
1
2(1 − 𝑢)

𝑛−1
2 𝑑𝑢

1

0

 

 

And though here it may come to mind to wonder why anyone would choose to take a 
complicated integral and seemingly make it worse, we can connect this new integral to 
the beta function: 

Β(𝑥, 𝑦) = ∫ 𝑡𝑥−1(1 − 𝑡)𝑦−1𝑑𝑡
1

0
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Which is exactly what we have for Β(1
2
,
𝑛+1

2
⁡).⁡ And since we’ve found the Beta function 

in our solution, a natural next step would be to move over to the Gamma function, and 
prove the relationship between the two.  

Take: 

Γ(x)Γ(𝑦) 

Where Γ(x) is the Gamma function: 

Γ(x) = ∫ 𝑒−𝑢𝑢𝑥−1𝑑𝑢
∞

0

 

So now we have: 

∫ 𝑒−𝑢𝑢𝑥−1𝑑𝑢
∞

0

∫ 𝑒−𝑣𝑣𝑦−1𝑑𝑣
∞

0

 

Which we can bring together since they are two integrals in different variable to get the 
following: 

∫ ∫ 𝑒−(𝑢+𝑣)𝑢𝑥−1𝑣𝑦−1𝑑𝑢𝑑𝑣
∞

0

∞

0

 

And at this point, faced with this integral, divine inspiration struck (thanks Wikipedia3). 
Substitute In 𝑢 = 𝑠𝑡 and 𝑣 = 𝑠(1 − 𝑡) and we have: 

∫ ∫ 𝑒−(𝑠𝑡+𝑠−𝑠𝑡)(𝑠𝑡)𝑥−1(𝑠(1 − 𝑡))𝑦−1 |
𝛿(𝑢, 𝑣)

𝛿(𝑠, 𝑡)
| 𝑑𝑠𝑑𝑡

∞

0

∞

0

 

= ∫ ∫ 𝑒−𝑠𝑠𝑥−1𝑡𝑥−1𝑠𝑦−1(1 − 𝑡)𝑦−1 |
𝛿𝑢

𝛿𝑠

𝛿𝑣

𝛿𝑡
−
𝛿𝑢

𝛿𝑡

𝛿𝑣

𝛿𝑠
| 𝑑𝑠𝑑𝑡

∞

0

∞

0

 

= ∫ ∫ 𝑒−𝑠𝑠𝑥+𝑦−2𝑡𝑥−1(1 − 𝑡)𝑦−1|(𝑡)(−𝑠) − (𝑠)(1 − 𝑡)|𝑑𝑠𝑑𝑡
∞

0

∞

0

 

= ∫ ∫ 𝑒−𝑠𝑠𝑥+𝑦−2𝑡𝑥−1(1 − 𝑡)𝑦−1|−𝑠|𝑑𝑠𝑑𝑡
∞

0

∞

0

 

But here we can notice that since both 𝑢 and 𝑣 range from 0 to infinity, they are positive, 
meaning either 𝑠, 𝑡 are both positive or both negative. But if both were negative, 1 − 𝑡 
would have to be negative, which is only possible for positive t which presents a 
contradiction and thus the absolute value of −𝑠 is 𝑠. Furthermore, since 𝑣⁡is positive 
and 𝑠 is positive, 1 − 𝑡 must be positive so t must range between 0 and 1, so we can 
change the bounds of one of the integrals: 

 
3 https://en.wikipedia.org/wiki/Beta_function 
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∫ ∫ 𝑒−𝑠𝑠𝑥+𝑦−2𝑡𝑥−1(1 − 𝑡)𝑦−1𝑠𝑑𝑠𝑑𝑡
∞

0

1

0

 

= ∫ ∫ 𝑒−𝑠𝑠𝑥+𝑦−1𝑡𝑥−1(1 − 𝑡)𝑦−1𝑑𝑠𝑑𝑡
∞

0

1

0

 

Here the eagle-eyed mathematician might notice that if we separate out the integrals 
into one purely with respect to 𝑡 and one purely with respect to 𝑠 we get: 

∫ 𝑡𝑥−1(1 − 𝑡)𝑦−1𝑑𝑡
1

0

∫ 𝑒−𝑠𝑠𝑥+𝑦−1
∞

0

𝑑𝑠 

But this is exactly Β(𝑥, 𝑦)Γ(𝑥 + 𝑦). So since what we started with was Γ(x)Γ(y) we have: 

Γ(x)Γ(y) = Β(𝑥, 𝑦)Γ(𝑥 + 𝑦) 

Β(𝑥, 𝑦) =
Γ(x)Γ(y)

Γ(𝑥 + 𝑦)
 

So back to our tomatoes, and the⁡Β (1
2
,
𝑛+1

2
⁡)⁡that⁡we⁡derived,⁡we⁡now⁡know⁡this⁡is⁡equal⁡

to: 

Γ (
1
2) Γ (

𝑛 + 1
2 )

Γ (
1
2 +

𝑛 + 1
2 )

 

=
(∫ 𝑒−𝑥𝑥−

1
2𝑑𝑥

∞

0
) Γ (

𝑛 + 1
2 )

Γ (
𝑛
2 + 1)

 

But this top integral can be evaluated, substituting in √𝑥 = 𝑢 so that 𝑑𝑢 =
𝑑𝑥

2√𝑥
 and: 

∫ 𝑒−𝑥𝑥−
1
2𝑑𝑥

∞

0

= 2∫ 𝑒−𝑢
2
𝑑𝑢

∞

0

 

But since this is again even, we can instead take it from negative to positive infinity, and 
get the Gaussian Integral: 

∫ 𝑒−𝑢
2
𝑑𝑢

∞

−∞

 

And though I won’t go through evaluating this, to spare you the time as well as due to a 
primal fear of what I saw on the Wikipedia page, I can assure you it does in fact evaluate 

to √𝜋. 
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So now if we scroll back up a few pages, we can get to a full recursive formula: 

𝑉𝑛(1) = 𝑉𝑛−1(1)(
√𝜋⁡Γ (

𝑛 + 1
2 )

Γ (
𝑛
2 + 1)

) 

 

Even better than this, we can now substitute in our formula for 𝑉𝑛−1 until we hit 𝑉1 and 
we get a neat telescoping sum. 

𝑉𝑛(1) = (
√𝜋⁡Γ (

𝑛 + 1
2 )

Γ (
𝑛 + 2
2

)
)(

√𝜋⁡Γ (
𝑛
2)

Γ (
𝑛 + 1
2

)
)(

√𝜋⁡Γ (
𝑛 − 1
2 )

Γ (
𝑛
2)

)…(
√𝜋⁡Γ (

3
2)

Γ (
4
2)

)(
√𝜋⁡Γ (

2
2)

Γ (
3
2
)

) 

Here all the terms but two Gamma functions and a bunch of roots of 𝜋 cancel out and 
we get: 

𝑉𝑛(1) =
Γ (

2
2)𝜋

𝑛
2

Γ (
𝑛 + 2
2 )

 

But since the Gamma function generalises factorials such that Γ(𝑥) = (𝑥 − 1)!, 
 Γ(1) = 0! = 1, so we can simplify further to: 

𝑉𝑛(1) =
Γ (

2
2)𝜋

𝑛
2

Γ (
𝑛 + 2
2 )

 

𝑉𝑛(1) =
𝜋
𝑛
2

Γ (
𝑛 + 2
2 )

 

With the added caveat that if for some reason you care about more multidimensional 
balls than simply our 1 meter radius tomatoes, you can just multiply through by the 
radius n times: 

𝑉𝑛(𝑟) =
𝑟𝑛𝜋

𝑛
2

Γ (
𝑛 + 2
2 )
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Back to Yianni and Maria 
Now that we’ve found the volume of an n-tomato, lets get back to our hungry couple. We 
can assume that in the time we’ve spent calculating this, they’ve grown appropriately 
famished and want a meal of 3000 calories each to satiate their hunger. We can also 
assume that a 70 dimensional food item offers the same energy per m70 that a three 
dimensional one offers per m3. A quick google search reveals that the caloric densities 
of tomatoes, cucumbers and feta are around 20, 20, 300 per hundred grams 
respectively, so taking those values and assuming each has about the density of water, 
we get 200 000, 200 000, 3 000 000 per meter cubed respectively. To calculate the 
volume of each in turn: 

Our 70-tomato has hypervolume 𝑉70(1) =
𝜋35

35!
≈ 1 ∗ 10−23𝑚70, so about 5 ∗ 10−18 

calories per 70-tomato. 

Our 70-cucumber has hypervolume 10𝑉69(1) =
10𝜋

69
2

Γ(
71

2
)

. Now this Γ (71
2
) may seem a bit 

scary, but one feature of the Gamma function is that Γ(𝑥 + 1) = 𝑥Γ(𝑥), and we know 

Γ (
1

2
) so we can set up a recursion: 

Γ (
71

2
) = (

69

2
) (

67

2
)⁡(

65

2
)…(

1

2
) Γ (

1

2
) 

= (
69

2
) (

67

2
)⁡(

65

2
)…(

1

2
)π

1
2 

=
69‼𝜋

1
2

235
 

Where ‘!!’ is the double factorial function, multiplying together all odd integers from 1 to 
69, and so our final volume is: 

10𝜋
69
2

(
69‼𝜋

1
2

235
)

 

=
10𝜋34235

69‼
⁡≈ 8 ∗ 10−22𝑚70 

So about 1 ∗ 10−16 calories per 70-cucumber.  

The 70-feta is the easiest of the bunch, as all we need to calculate it 1
2

70
≈ 8 ∗ 10−22 so 

about 3 ∗ 10−15 calories per cube of 70-feta.  
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Food waste 
But before that, we have a problem, since as any seasoned restauranteur, you can’t just 
trust some unknown supplier – maybe they’ve used some nasty 70 dimensional 
pesticides, or unclean production methods, so the vegetables must be peeled.  

 

Some in depth study of the picture above reveals that we can simply model the area 

needing to be peeled as the outer 1
10

 of the radius, for a particularly untrustworthy 

supplier. So let’s see what this does to our vegetables. 

For the tomato, we simply take 𝑉70 (
9

10
) =

(
9

10
)
70
𝜋35

35!
≈ 5 ∗ 10−27 so about 1 ∗ 10−21 

calories. More than a thousand times off, just by taking 10% of the radius away. This 
may not be very intuitive – after all looking at 2 and 3 dimensional balls, it’s not really 
true that most of their volume is near their ends, but if we look at the rate of change of 
our 70-ball’s hypervolume, it’s proportional to its radius to the 69th power, so it’s only 
natural that it grows at such a fast rate that even the outer hundredth of it still 
constitutes a majority of volume.  

Doing this same calculation with our cucumber, we get about 6 ∗ 10−20calories, and 
since fortunately we have no need to cut down on feta (though one could question 
where the volume of a hypercube is concentrated4), we can now find the caloric content 
of our portion: 

1(6 ∗ 10−20) + 10(1 ∗ 10−21) + 10(3 ∗ 10−15) ≈ 3 ∗ 10−14 

So to feed their required 6000 calories, we need a grand total of 2 ∗ 1017portions of 
salad. 

 

 

 

 
4 For an answer to this, imagine an n-ball in the centre of an n-cube, and keep increasing its radius until it 
touches the walls of the cube, and then maybe beyond, while calculating the percentage of the volume of 
the n-cube that the n-ball occupies. 
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The best dimension? 
And now, after Yianni and Maria have left, happy with their meal, and the bill has come 
in for quadrillions of vegetables, you ask yourself ‘why couldn’t they have been of a 
different dimension?’. And in fact, what dimension would be the cheapest (assuming 
constant prices per vegetable)?.  Well the feta is the easiest yet again, as every time you 
go up a dimension, its hypervolume halves, so the 0th dimension where it has a measure 
of 1 is the most effective. The cucumber and tomato however need a bit more work, but 
by simply graphing the hypervolume of an n-ball you get the answer pretty clearly: 

 
 

So the highest volume of an n-tomato is found in five dimensions, and similarly an n-
cucumber in 6. And thus you now know for future such mishaps that higher dimensional 
orders are only worth taking if you’re approached by a 0 dimensional being, a 5 
dimensional being and a 6 dimensional being asking to share a Greek salad. 

 

Conclusion 
So does this mean anything? Not really - if we go back to the start, where I said I’d be 
ignoring units for the sake of my salad, that’s actually quite a big thing to ignore. Had we 
instead taken vegetables of radius 0.1 metre, our optimal vegetables would have 
changed dramatically in dimension and, even more to the point, if we had taken 
vegetables of radius 100cm, their volume even in 70 dimensions would have been 
measured in hugely positive powers of 10, rather than what we ended up with. 

This is because when cropping out the physical meaning of the numbers, and treating 
them purely algebraically, we forget that as nice as it is to do all the fun maths, if I made 
someone a bunch of red circles and green rectangles, they wouldn’t be happy with their 

0
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6
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Vn
(1

)

n
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salad even if I reassured them that it did in fact have the same numerical measure as an 
actual salad would have.  

So is this formula we’ve derived useless? Not at all. Apart from its uses in various 
scientific fields, it’s important to remember that an n-ball really is just n numbers the 
squares of which sum to less than or equal to its radius squared, and even in a two or 
three dimensional setting, this is by no means a rare situation5.  

 

 

 
5 One fascinating example of a two dimensional puzzle which uses this formula to come to a solution can 
be found here: 
https://www.youtube.com/watch?v=6_yU9eJ0NxA&t=10s&pp=ygUnbnVtYmVycGhpbGUgZGFydGJvYXJkI
GhpZ2hlciBkaW1lbnNpb25z  

https://www.youtube.com/watch?v=6_yU9eJ0NxA&t=10s&pp=ygUnbnVtYmVycGhpbGUgZGFydGJvYXJkIGhpZ2hlciBkaW1lbnNpb25z
https://www.youtube.com/watch?v=6_yU9eJ0NxA&t=10s&pp=ygUnbnVtYmVycGhpbGUgZGFydGJvYXJkIGhpZ2hlciBkaW1lbnNpb25z

