Greek salads, food waste, and why tomatoes are
most filling in five dimensions (and cucumbers in six)

Introduction

Picture this - you are a taverna owner in Greece, minding your day, and you are suddenly
approached by a couple of 70-dimensional beings, Yianni and Maria, who ask for one
simple thing — a Greek salad fit for their 70D stomachs. Now naturally, as they’re
reasonable people they give you the contacts of a supplier of the necessary ingredients
in 70D, and since you’re no novice and have quite the number of culinary exploits under
your belt, preparing the salad itself will prove no problem for you, but where you’re really
struggling is knowing how much to order — after all how filling even is a single 70-
dimensional vegetable?

Your first order of business is to look through the ingredients and decide how to model
the volume of each one, for trying to visualise what an actual tomato shape would look
like in 70D is too much even for your prodigious brain. The following is what you decide:

Ingredient Model
Tomatoes Modelled as a hyperball’ of radius 1 meter
Cucumbers Modelled as a hypercylinder of sorts, where a cross

section of an (n-1)-ball of radius 1 meter is extended 10
meters in the n*" dimension.

Feta cheese Modelled as a hypercube of side length 0.5 meters

Peppers, Onions, Olives Modelled as tomatoes

Olive oil, Oregano, Salt Modelled as out of stock

One portion Modelled as 1 cucumber, 10 tomatoes and 10 blocks of
feta

It might also be worth mentioning that volumes will be treated purely numerically, and
the differences between a meter to the n'" power and a meter to the (n-1)" power will not
be explored, so if the numbers derived at the end seem ridiculous, thatis in part
because they will be.

" The prefix hyper- generalises things to any number of dimensions, while putting some specific number
(or n) in front of an object or concept specifies that exact number of dimensions (e.g. a 3-ball is just a ball,
and a 2-ballis a disc)
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A meander through familiar dimensions

Now, since jumping straight to 70 dimensions seems quite the leap, let us start by trying
to build an intuition for how volume works in dimensions we can comprehend as well as
what our models mean, and then extending that to the fourth and higher dimensions in
an attempt to find a more general formula.

Before even starting with the first dimension however, it is helpful to start by defining
what is meant by an n-ball, an n-cube, and even an n'" dimension. Let’s start with the
latter — an n dimensional space can be viewed most simply as a place where each point
or vector has n different components, where you could imagine n different axes, all
mutually perpendicular, that each independently determine one component. An n-cube
is then a shape with equal edge lengths, right angles in every dimension, and 2"
corners, similarly to how a square works in 2 dimensions or a cube in 3. Fortunately for
our strained restauranteur, the area of an n-cube is exceedingly simple to obtain, asitis
just the side length to the n™ power. Where things get interesting however is the n-ball,
which can be defined as the area encompassed by the locus of points at some given
distance from the centre, or by the equation x? + x2 + x% + -+ + x2_; + x2 < r?,
something both easier to deal with analytically, and easier to comprehend intuitively
than what equidistance means in dimensions higher than the third. Unfortunately the
hypervolume of this is not quite so easy to figure out, so let’s embark on an inter-
dimensional journey.

Starting with the first dimension, this consists of just one axis, so our 1-tomato has as
its boundary two points, each at distance one meter from some centre (for our
purposes the origin), as can be seen below?:

Since it’s one dimensional, its hypervolume is just a length, 2.

2Thanks be to Desmos for its comprehensive and easy to use graphing tools
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Moving onto two dimensions, we now have a second axis, and the new equation
x% + y2 < 1, which yields the following:

S
i

f

Now this is a tomato with a much more difficult to calculate hypervolume (also known
as area in the two dimensional case). Though we could simply remember the formula
for an area of a circle (since that is what this strange shape in fact is), we’re looking to
glean insight into how we might extend this to dimensions we cannot visualise, so let’s
try another way. Envision one small sliver of the height of this 2-tomato, taken with
some very small width dx such that we can imagine it to be a rectangle. As x% + y% < 1,
foranyx,y = W, so the height of this rectangle is twice that and its area is
2V1 — x2 times dx, and summing all of those rectangles from the boundaries of the
circle—1 < x <1, we get:

1
f 241 — x?%dx

-1

Which we can solve with a substitution of x = sin(u).

2 fi\/ 1 — sin?(u)cos (u)du
2

=2 fi\/cosz(u)cos (w)du

T

2
= Zj”COSZ(u)du

sin(2u)

And since the antiderivative of cos?(u) is g + we can evaluate this at the bounds:

T
5 u sin(2u)]z
2 4 T
2
—T[+O T 0
) 2

And after all that we’ve managed to get an answer that confirms our usual formula for
finding the area of a 2-tomato, nr?2.
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Now moving up yet another dimension, we can do much the same thing, except this
time we take a 2-tomato shaped slice of our 3-tomato:

Now using the formula for the area of a 2-tomato nr?, and the fact that the radius of any

such bar will be V1 — x2, since this time x2 + y? + z2 < 1, but the radius we are looking

foris,/y? + z2. Thus the area of any such small disc formed over a small width dx will be
nr? times dx, which we can sum up between the bounds for x as:

1 2
f v 1 —x?% dx
-1

1
=.[ T —x’dx
-1
[ x>
= |mx — —
3 1.,
B i i
B 3
_47r
3

Which is, again, the result expected for our 3-tomato based on the pre-existing formula

4
—-mr3,
3

Here it seems natural to interject that in any number of dimensions, the unit n-ball can
be scaled up to an n-ball of any radius by stretching it by factor r parallel to each axis,
since each such stretch affects only that one dimension and no other. This means that

an n-ball of some radius r has a volume of "V}, (1) where V,,(x) is the volume of a ball in
n dimensions of radius x.

Now we could continue in this manner, perhaps thinking up some ingenious way of
depicting a fourth dimension, with a ball of changing radius through time or some other
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graphical means, and then repeating this same method of taking the cross section
which we’ve already found a formula for and integrating across the new axis on and on
until we get to 70 dimensions. But we wouldn’t want to keep Yianni and Maria hungry, so
we’ll have to think of a more efficient method.

A formula for the n-tomato

Let’s start by taking an n-tomato. Let’s look at its cross section when cut by a

hyperplane, which will be an (n-1)-tomato of radius V1 — x2 for some small width over
the n" dimension dx so we can represent this as:

1
f Vp—1(W1—x?)dx
1

But we’ve shown that 1,(x) = x™V,,(1) so we can put this in terms of a unit (n-1)-tomato

1 n—-1
f Voi(DV1—x2  dx
-1
1 n—1
= n—l(l)f V1—x2 dx
-1

This is an even function due to the x? so we can change up the bounds a bit.

1 n—1
2Vn_1(1)j v1—-x? dx
0

. . d d
Now we can substitute in u = x2, so that dx = =% = 2£,
2x  2\u

n-1

1 1
Vn_l(l)f u2vl—u du
0

1 4 n—1
= n_l(l)j u2(l—u) 2 du
0

And though here it may come to mind to wonder why anyone would choose to take a
complicated integral and seemingly make it worse, we can connect this new integral to
the beta function:

1
B(x,y) =f t*"1(1 —t)Y ldt
0
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Which is exactly what we have for B (l nTH) And since we’ve found the Beta function

in our solution, a natural next step would be to move over to the Gamma function, and
prove the relationship between the two.

Take:

rere)

Where I'(x) is the Gamma function:
r'x) = f e “u*ldu
0
So now we have:

(o] (o]
f e‘”u"‘lduf e Pv¥ 1ldv
0 0

Which we can bring together since they are two integrals in different variable to get the
following:

f f e~ WtV x=1pY=1qudv

And at this point, faced with this integral, divine inspiration struck (thanks Wikipedia®).
Substitute Inu = st and v = s(1 — t) and we have:

6(u V)
—(st+s st) x—1 y-1
J J () (s(1 = )77 | = GO dsdt
@ re Sudv Sudv
— —SoXx—1px—-1,y-1 -1
J;) L e Ss¥ X1y (1 —¢t) 55 5t 5t B dsdt

= foo fooe—ssx+y—2tx—1(1 _ t)y_ll(t)(—s) —(s)(1— t)ldsdt
o Jo

=j f e Ss¥tY=2¢X=1(1 — )Y~ 1| —s|dsdt
0

But here we can notice that since both u and v range from 0 to infinity, they are positive,
meaning either s, t are both positive or both negative. But if both were negative, 1 — ¢
would have to be negative, which is only possible for positive t which presents a
contradiction and thus the absolute value of —s is s. Furthermore, since v is positive
and s is positive, 1 — t must be positive so t must range between 0 and 1, so we can
change the bounds of one of the integrals:

S https://en.wikipedia.org/wiki/Beta_function

Philip Chalakov Page 6 of 12



1 [e's)
f f e Ss¥tY=2¢x=1(1 — ¢)Y lsdsdt
0o Jo

1 0
= j j e Ss*¥ty=1¢x=1(1 — t)¥dsdt
0 Jo

Here the eagle-eyed mathematician might notice that if we separate out the integrals
into one purely with respect to t and one purely with respect to s we get:

1 [e9)
j t*71(1 - t)y‘ldtj e Ss¥ty-1lds
0 0

But this is exactly B(x, y)I'(x + y). So since what we started with was I'(x)['(y) we have:
Fx)r'(y) = B(x,y)I'(x + y)

_Tr(y)

Bxy) = I'(x+y)

So back to our tomatoes, and the B (%nTﬂ) that we derived, we now know this is equal

to:

rG)r(*3)

rz+"5)

(fooo e"xx_%dx> r (n -Zl- 1)

r(z+1)

. . e d
But this top integral can be evaluated, substituting in vVx = u so that du = ﬁ and:
oo 1 oo
—_ 2
f e *x 2dx = ZJ e “du
0 0

But since this is again even, we can instead take it from negative to positive infinity, and

(o]
_12
fe”du
— 00

And though | won’t go through evaluating this, to spare you the time as well as due to a
primal fear of what | saw on the Wikipedia page, | can assure you it does in fact evaluate

to V.

get the Gaussian Integral:
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So now if we scroll back up a few pages, we can get to a full recursive formula:
n+1
var(f5)

V(D) = Vya (D)

Even better than this, we can now substitute in our formula for V,,_; until we hit V; and
we get a neat telescoping sum.

@) () () (ErE) ()
r(29) e\ TR r@) A\ )

Here all the terms but two Gamma functions and a bunch of roots of r cancel out and

V(1) =

we get:

vt
(5

But since the Gamma function generalises factorials such that I'(x) = (x — 1)!,

n
)5
+

Va(1) =

I'(1) = 0! = 1, so we can simplify further to:

r@

(D) =

r(*27)
V(l)—ﬂ—%
o)

With the added caveat that if for some reason you care about more multidimensional
balls than simply our 1 meter radius tomatoes, you can just multiply through by the
radius n times:
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Back to Yianni and Maria

Now that we’ve found the volume of an n-tomato, lets get back to our hungry couple. We
can assume that in the time we’ve spent calculating this, they’ve grown appropriately
famished and want a meal of 3000 calories each to satiate their hunger. We can also
assume that a 70 dimensional food item offers the same energy per m’° that a three
dimensional one offers per m®. A quick google search reveals that the caloric densities
of tomatoes, cucumbers and feta are around 20, 20, 300 per hundred grams
respectively, so taking those values and assuming each has about the density of water,
we get 200 000, 200 000, 3 000 000 per meter cubed respectively. To calculate the
volume of each in turn:

3
Our 70-tomato has hypervolume V,,(1) = — =~ 1 * 10723m’°, so about 5 * 10718
calories per 70-tomato.

69

Our 70-cucumber has hypervolume 10V4(1) = 1%7:2) Now this F( ) may seem a bit
2

scary, but one feature of the Gamma function is that I'(x + 1) = xI'(x), and we know

r (%) S0 We can set up a recursion:
"(2)=3)E) @66
-3)G) @) -G

1
69!l T2

235

Where ‘1!’ is the double factorial function, multiplying together all odd integers from 1 to
69, and so our final volume is:

69
10 2

1
69! T2
S5

3 107.[34-235

~ -22.70
oo ~ 8*107%“m

So about 1 * 107° calories per 70-cucumber.

70
The 70-feta is the easiest of the bunch, as all we need to calculate it% ~ 8x107%2 s0

about 3 * 107> calories per cube of 70-feta.
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Food waste

But before that, we have a problem, since as any seasoned restauranteur, you can’t just
trust some unknown supplier — maybe they’ve used some nasty 70 dimensional
pesticides, or unclean production methods, so the vegetables must be peeled.

Some in depth study of the picture above reveals that we can simply model the area
needing to be peeled as the outer% of the radius, for a particularly untrustworthy

supplier. So let’s see what this does to our vegetables.

9 70 35
— s
For the tomato, we simply take V5, (110) = % ~ 5% 10727 soabout 1 * 10721

calories. More than a thousand times off, just by taking 10% of the radius away. This
may not be very intuitive — after all looking at 2 and 3 dimensional balls, it’s not really
true that most of their volume is near their ends, but if we look at the rate of change of
our 70-ball’s hypervolume, it’s proportional to its radius to the 69" power, so it’s only
natural that it grows at such a fast rate that even the outer hundredth of it still
constitutes a majority of volume.

Doing this same calculation with our cucumber, we get about 6 * 10~2°calories, and
since fortunately we have no need to cut down on feta (though one could question
where the volume of a hypercube is concentrated?), we can now find the caloric content
of our portion:

1(6 % 10729) + 10(1 *10721) + 10(3 * 107 15) = 3 x 10714

So to feed their required 6000 calories, we need a grand total of 2 * 1017 portions of
salad.

4 For an answer to this, imagine an n-ball in the centre of an n-cube, and keep increasing its radius until it
touches the walls of the cube, and then maybe beyond, while calculating the percentage of the volume of
the n-cube that the n-ball occupies.
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The best dimension?

And now, after Yianni and Maria have left, happy with their meal, and the bill has come
in for quadrillions of vegetables, you ask yourself ‘why couldn’t they have been of a
different dimension?’. And in fact, what dimension would be the cheapest (assuming
constant prices per vegetable)?. Well the feta is the easiest yet again, as every time you
go up a dimension, its hypervolume halves, so the 0" dimension where it has a measure
of 1is the most effective. The cucumber and tomato however need a bit more work, but
by simply graphing the hypervolume of an n-ball you get the answer pretty clearly:

6

Vn(1)

So the highest volume of an n-tomato is found in five dimensions, and similarly an n-
cucumber in 6. And thus you now know for future such mishaps that higher dimensional
orders are only worth taking if you’re approached by a 0 dimensional being, a 5
dimensional being and a 6 dimensional being asking to share a Greek salad.

Conclusion

So does this mean anything? Not really - if we go back to the start, where | said I’d be
ignoring units for the sake of my salad, that’s actually quite a big thing to ignore. Had we
instead taken vegetables of radius 0.1 metre, our optimal vegetables would have
changed dramatically in dimension and, even more to the point, if we had taken
vegetables of radius 100cm, their volume even in 70 dimensions would have been
measured in hugely positive powers of 10, rather than what we ended up with.

This is because when cropping out the physical meaning of the numbers, and treating
them purely algebraically, we forget that as nice as itis to do all the fun maths, if | made
someone a bunch of red circles and green rectangles, they wouldn’t be happy with their
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salad even if | reassured them that it did in fact have the same numerical measure as an
actual salad would have.

So is this formula we’ve derived useless? Not at all. Apart from its uses in various
scientific fields, it’s important to remember that an n-ball really is just n numbers the
squares of which sum to less than or equal to its radius squared, and even in a two or
three dimensional setting, this is by no means a rare situation?®.

5 One fascinating example of a two dimensional puzzle which uses this formula to come to a solution can
be found here:

https://www.youtube.com/watch?v=6_yU9eJONxA&t=10s&pp=ygUnbnVtYmVycGhpbGUgZGFydGJvYXIJKI
GhpZ2hlciBkaW1lbnNpb25z
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