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1 Introduction

At the age of twenty-three, Sir Isaac Newton upended a thousand years of Aristotelian thought with the
publication of his equation for universal gravitation:

F = G
m1m2

r2

Even reinforced by Greek astronomer Claudius Ptolemy, the orthodox belief that objects only moved if
an external force drove that motion – centuries of formerly founded thinking – was rendered obsolete
overnight, the foundations of classical thought torn through with the inexorability of a hurricane.

Figure 1: Isaac Newton demonstrated the Universal Law of Gravitation by showing that a comet visible
during 1680 and 1681 followed the path of a parabola. [1]

At the age of sixteen, I set out to discover how many tennis balls would fit inside the Eiffel Tower. One
of us made history; the other, a very strange spreadsheet. While the product of these efforts isn’t out
of the passion I have for mass-produced leisure-grade foam-core spheres or France’s most famous lattice
tower, it does reflect something else entirely.

At twenty-nine minutes past five, on a Monday morning in July of 1945, the world’s first atom bomb
detonated in the desert ninety-six kilometres north-west of Alamogordo, New Mexico. A stunned forty
seconds later, contemplating this historic spectacle, a cluster of scientists stood at the base camp, where
the shockwave burst through. The Italian-American physicist Enrico Fermi was the first to stir, witnessing
the culmination of the project he had helped initiate.

Prior to the explosion, Fermi tore a sheet of notebook paper into small bits. As he felt the first
quiver of the shockwave spreading outwards, he released the shreds into the air above his head, which
fluttered down and away from the ever-growing mushroom cloud on the horizon, coming to a rest on the
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ground about two and a half yards behind him. After a brief mental calculation, Fermi proclaimed that
the bomb’s energy was equivalent to that produced by ten thousand tons of TNT (10 kilotons, or KT).
Calculations from more sophisticated areas near the blast zone revealed the now-accepted value of 21KT
[2], well within an order of magnitude of accuracy, which was really all that was required.

Enrico Fermi’s extraordinary ability to make excellent approximate calculations with little to no actual
data justifies the coinage of what is known today as a Fermi problem – an estimation problem involving
dimensional analysis (an examination of the relationships between different physical quantities), or an
approximation of extreme scientific calculations.

Enlightened by Fermi’s paper scraps and XKCD’s “What If?”, and perhaps driven by a similar desire
to understand the unknowable, I decided to tackle a few Fermi problems of my own. Some serious.
Some... less so.

Let’s embark on a trip to France, together.

Figure 2: The Eiffel Tower. [3]
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2 The Fermi Problems

2.1 La Tour aux Balles

Question: How many ITF-approved, pressurised Type 2 tennis balls fit in the Eiffel Tower?

Response: A few billion. Give or take a baguette.

Tennis balls, at the tour level, have a surprisingly non-negligible variation in their diameters. The
International Tennis Federation (ITF) defines their official, standardised diameters by class:

• Type 1 (fast): 6.54 - 6.86cm

• Type 2 (medium) 6.54 - 6.86cm

• Type 3 (slow) 7.00 - 7.30cm

• Type 4 (high altitude) 6.54 - 6.86cm

The ITF maintains that Type 3 and Type 4 are only allowed for use on tennis courts 1219m above sea
level (to balance out the increased surface area leading to more drag with the reduced air density at
higher altitudes leading to less of it), so it seems most reasonable to average the range for the most
conventionally used tennis ball, a Type 2 ball, giving a diameter of 6.7cm (0.067m) [4].

It is surprising that there are no accurate estimates, at all, regarding the volume enclosed by the shape
of the Eiffel Tower. Modelling it in exact curved fashion would make this problem needlessly complex
for an order-of-magnitude estimation – it can be argued that the sheer increase in the amount of work
required is not worth the uncertain gain in accuracy.

Therefore, most reasonably, a spherical cow would be considered1 by simplifying the tower to a square-
based pyramid, with base width 124.9m and height 309.6m [5]. The following calculations are, as a result,
very simple:

V =
1

3
b2h

=
1

3
(124.9)2(309.6)

= 1609921.032m3

≈ 1 600 000m3

It would be dishonest to say that I’m satisfied with this approximation, however. As the tower in actuality
curves inwards, the calculated volume is a comically vast overestimate (see Figure 3). This doesn’t hold
a candle to the order of magnitude that the final answer would have, so it would be entirely appropriate
for a Fermi estimation, but I still wanted to do better.

The tower can be modelled more realistically as a solid of revolution2 by using a function which
describes how its cross-sectional width narrows with height, which we could then obtain a function for
the variation in cross-sectional area A(y) from, and then integrate for the volume:

V =

∫ h

0

A(y) dy

Through a visual judgement of the shape of the Eiffel Tower, an exponential function appears to be
most accurate in capturing the shape of the curve of one of its edges.3 In any case, the error gained in
incorrectly assuming the scaling law of the taper (how it changes as you go up – linear, exponential or
something entirely different) is severely outweighed by the magnitude of the error in assuming that the
tower is a square-based pyramid, so going down this route is still best.

The general form for an exponential function is y = aebx where, in this scenario, x represents the
height, y denotes the “radius” of the cross-section at that height (the half-width), and a and b represents
constants to be determined from data. We can graph this exponential function by considering various

1Once upon a time, milk production at a dairy farm was low, so the farmer wrote to the local university, asking for help
from academia. A multidisciplinary team of professors was assembled, headed by a theoretical physicist, and two weeks
of intensive on-site investigation took place. The scholars then returned to the university, notebooks crammed with data,
where the task of writing the report was left to the team leader. Shortly thereafter the physicist returned to the farm,
saying to the farmer, ‘I have the solution, but it works only in the case of spherical cows in a vacuum.’ If assumptions were
currency, theoretical physicists would be trillionaires by lunchtime.

2A 3D object created by rotating a 2D shape or curve around an axis. You could alternatively break it down into
geometric primitives (simple 3D shapes) instead, but I wanted to have some more fun with this.

3Their use is also likely; they’re generally used in skyscrapers to distribute load effectively and minimise material usage.
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(a) Volume as a square-based pyramid: V = 1
3
b2h (b) Volume with exponential taper: V =

∫ h

0
4a2e2bx dx

Figure 3: Comparison of Eiffel Tower volume modelling approaches. The orange cross-hatched area
represents the “volume” calculated relative to the actual volume of the tower. [6]

points on the Eiffel Tower at its different stages. Sources report slightly varying platform dimensions
depending on whether they measure from edge-to-edge or include usable floor area, but after a painstaking
analysis of the dimensions, I determined these co-ordinates that are likely to fit on the graph of the shape
of the curve, in the form of height against half-width (x, y):

• (0, 62.45); ground level

• (57.63, 31.68); first floor

• (115.73, 18.44); second floor

• (276.13, 8.13); third floor.

When these co-ordinates are plotted in Desmos, it does certainly look somewhat like an exponential
curve!

Figure 4: A graph of height against the half-width of the Eiffel Tower.

We can now take ln y against x, which allows us to confirm the curve’s exponential nature as this should
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result in a straight line plot, for which we can draw a line of best fit. Going back to the general form for
an exponential curve:

y = aebx

⇒ ln y = ln
(
aebx

)
ln y = ln a+ bx

ln y = bx+ ln a

Evaluating ln y for all data points gives 4.134, 3.455, 2.915, and 2.095 respectively for each point, to three
decimal places. Plotting ln y against x, and drawing a line of best fit4, yields:

Figure 5: A graph of height against the natural log of the half-width of the Eiffel Tower.

This means that the gradient b = −0.0070862, and the y-intercept ln a = 3.94604, which means that
a = e3.94604 ≈ 51.73011. This gives an exponential curve function of:

y = 51.73011e−0.0070862x

As this considers the half-width of the Eiffel Tower, this function can be called Wh(x). When plotted
over the co-ordinates before, it lines up somewhat well, but very much imperfectly:

Figure 6: The exponential model Wh(x) = 51.73011e−0.0070862x compared to real edge data points.
While the curve underestimates the width at the base (x = 0), it aligns more closely with the tower’s
actual shape in the upper regions — where most of the volume lies. This supports the model’s use for a
reasonable Fermi approximation despite its imperfect fit.

This is expected when the points span such a wide range, and when the data doesn’t perfectly follow
a single exponential decay all the way down – which most real towers don’t. After all, if you look at
any real image of the Eiffel Tower, the curve of the tower changes abruptly through its stages, almost
like a piecewise function (which uses different line equations for different intervals). Using them could
increase the accuracy of the model, albeit at an unjustifiably high level of effort even compared to the
excessiveness of what we’re doing now – the marginal increase in precision is greatly outweighed by the
added complexity, offering no significant improvement in the context of an order-of-magnitude estimation.
In any case, since most of the tower’s volume lies within the range where it does fit well, the error is now
certainly negligible in the context of a Fermi problem.

The beauty of Fermi problems is that if you think you have made an underestimation or overestimation
in a particular value, you can adjust other values to compensate for that (at your own peril). Generally,
overestimates and underestimates tend to help cancel each other out.

We can move forward by using calculus to estimate the volume of the tower, by integrating the square
cross-sectional area over the tower’s height. Let W (x) denote the full width of the tower and A(x) denote

4I could have also skipped this entire step and used exponential regression, a built-in function in Desmos. I chose this
approach because it doesn’t require any special techniques and can be done with any spreadsheet or graphing software.
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the cross-sectional area at height x, with V representing the volume of the tower:

W (x) = 2Wh(x) (full width is double the half-width)

= 2
(
51.73011e−0.0070862x

)
= 103.46022e−0.0070862x

A(x) = W (x)2 (assuming a perfect square cross-section)

=
(
103.46022e−0.0070862x

)2
= 10704.01712e−0.0141724x

V =

∫ h

0

A(x) dx

=

∫ 309.63

0

10704.01712e−0.0141724x dx

= 10704.01712

∫ 309.63

0

e−0.0141724x dx

= 10704.01712

[
1

−0.0141724
e−0.0141724x

]309.63
0

(reverse of chain rule)

= 10704.01712

[
1

−0.0141724

(
e−0.0141724[309.63] − e−0.0141724[0]

)]
=

10704.01712

−0.0141724

(
e−4.38820 − e0

)
≈ −755272.016 (−0.98758)

≈ 745889.2184m3

Rounded to two significant figures, the volume of the Eiffel Tower, V , is 750 000m3. This differs from
the square-based pyramid estimate by a factor of 2.13̇, which was surprising to me initially until I had
another look at the comparison between the modelling approaches. It does seem very likely that the
square-based pyramid estimate is a massive overestimate, but I also think that my model underestimates
the volume (to a lesser degree), and that the real value lies somewhere slightly higher. Nevertheless, it
most definitely appears more accurate than the square-based pyramid we started with.

The volume of an average Type 2 pressurised tennis ball is obtained with a very simple calculation:

Vb =
4

3
π

(
0.067

2

)3

≈ 1.57479 · 10−4 m3

A very lazy approach to figuring out the number of tennis balls n that could fit would be to simply divide
the volume of the tower by the volume occupied by each tennis ball. This would go forth as such:

n =
V

Vb

=
750000

1.57479 · 10−4

= 4762539767

≈ 5 · 109

This approach gratuitously dismisses the entire field of sphere packing in mathematics, and is nothing
short of a crime against geometry (even if it would suffice for an order-of-magnitude estimate).

Packing spheres in a given volume, say, 1m3, depends primarily on the fraction of space occupied by
them once they are jammed together in a mechanically stable arrangement. While random packings of
identical spheres can vary with the packing efficiency φ being 54%, dense and efficient packings have a
value of 64%, and the most efficient packings are at 74%. These limits arise from the balance between
geometry (how neighbouring spheres fill space) and mechanical stability (the frictional contacts that keep
spheres from slipping past each other) [7].

Under normal, lower-friction circumstances, spheres (e.g. atoms or marbles) naturally fall into close-
packed structures because it’s energetically favourable. However, with the tennis balls we’re playing with
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here, their high-friction fuzzy surface means that they resist doing so, meaning that there is a much
higher likelihood of ending up with random loose packing (φ ≈ 55%) if simply dropped in without care.
Furthermore, friction could cause jamming where balls lock into place prematurely, leading to more voids
and air gaps. Ultimately, the packing efficiency we’ll end up with is dependent on whether we’ve decided
to manually stack every individual tennis ball with care within the tower, or if we’ve simply dumped
them in. For a more detailed explanation on the different approaches to sphere packing, see Appendix
4.1.

(a) SC; φ ≈ 52.4% (b) FCC; φ ≈ 74% (c) BCC; φ ≈ 68% (d) HCP; φ ≈ 74%

Figure 7: A comparison of different packing approaches with spheres of diameter 1 in a container of
length 5. While this may give the appearance that simple cubic (SC) packing is most efficient, this is
only by virtue of the coincidence that a perfect number of spheres fit within the dimensions of the box.
Even a tiny change in the box’s dimensions could make SC packing vastly more inefficient, which is why
its value of φ is much lower than the rest. Ultimately, the number of spheres that can fit in a container
depends largely on its dimensions [8].

I will assume a more efficient packing as a means of compensating for a probable underestimate in the
calculation of my volume, as well as because I want to consider a scenario in which one might genuinely
attempt to maximize how many tennis balls could fit, which represents the true upper limit of the scenario.
Given that φ = 0.64:

n =
V φ

Vb

=
750000 · 0.64
1.57479 · 10−4

= 3048025451

≈ 3 · 109

In conclusion, the Eiffel Tower holds approximately 3 billion tennis balls. Serve accordingly.
Now that we’re done – if you’ll excuse me – I have a spreadsheet full of foam-core leisure-grade

projectiles to close.

2.2 Interstellar Waldo

Question: Suppose I have hidden an atom in a completely random location within the
observable universe. How long would it take you to find it?

Response: Text me when you’re 1063 years in. Call me if you’ve gone 1065 without any luck.
Find me if entropy has maximised to no avail.

The observable universe is very big[citation needed]. Estimates place its diameter at about 93 billion light
years, which increases at a rate of about 1.96 · 109ms−1, about 6.5 times faster than the speed of light in
empty space [9].5 Given that, it’s a very good thing we’re doing this now rather than later.

We will assume that, throughout this ordeal, you carry with you a magical ray gun that can identify
whether any atom you point to using the gun is the atom I’ve hidden within 10−9 seconds, which has a
range of 107m, meaning it can identify any specific atom within that radius. Foolishly idealistically, we’ll
also assume that you won’t accidentally miss any atoms, and that you can super precisely point your gun
at a specific atom.

5This faster-than-light motion is possible in curved space-time, or equivalently under the gravitational force’s influence.
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An absolute lower bound for the time taken, t, would be to randomly fire at every atom in the
observable universe (ignoring the range of the gun for now) until you find the one I’ve placed. The mass

Figure 8: A map of matter density fluctuations within the observable universe [10].

of all matter, M , in the observable universe is frequently quoted as 1.45 · 1053kg [11]. Assuming that
all atoms are hydrogen atoms (which are about 74% of all atoms in the Milky Way by mass), you can
estimate the total number of atoms N by dividing the mass of all ordinary matter by the mass of a
hydrogen atom, mh, which is 1.67 · 10−27kg.

N =
M

mh

=
1.45 · 1053

1.67 · 10−27

≈ 8.68 · 1079

Now, we search through each one of them every nanosecond:

t =
(
8.68 · 1079

) (
10−9

)
≈ 8.7 · 1070s

This amounts to about 2.76 · 1063 years, which is the time it takes to have a 100% chance of finding the
atom. This amount of time is so unfathomably large that I’ve resorted to telling you to go to Appendix
4.2 if you’d like to visualise its sheer insanity.

Unfortunately, most of the matter in the universe is far out of reach for any human being. The main
problem for a prospective atom-scanner would be the immense amount of time required for interstellar
space travel (as our range is limited), which will certainly take up more time than individually scanning
every atom.

Let’s very generously assume that the maximum velocity man-made propulsion can manage is exactly
the speed of light, c ≈ 3 · 108ms−1. Treating the observable universe as a sphere with radius 46.5 billion
light years across, its volume, Vu, is calculated as follows:

1 ly =
(
3 · 108

)
(60)(60)(24)(365)m

= 9.4608 · 1015m
⇒ 46.5 · 109 ly =

(
46.5 · 109

) (
9.4608 · 1015

)
m

= 4.399272 · 1026m

Vu =
4

3
π
(
4.399272 · 1026

)3
≈ 3.56641 · 1080m3

We will also assume that all the atoms in the universe are uniformly distributed. Although they absolutely
are not, it should suffice for an average and certainly suffices for an order-of-magnitude estimate. The
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following, then, will be a calculation to determine how many atoms there are in an average spherical slice
of the universe of radius 107m, n(107). Starting off with the number of atoms in 1m3, n1:

n1 =
N

Vu

=
8.68 · 1079

3.56641 · 1080
≈ 0.24338

⇒ n(107) = n1 · 107

= 0.24338 · 107

= 2.4338 · 106

Considering that only about 0.0000000000000000000042% of the universe contains any matter [12], I’m
not too surprised that there’s less than a quarter of an atom per cubic metre of space.

Surprisingly, we see a return to sphere packing! Considering that you’re really smart, let’s assume that
you’ve used the most efficient face-centred cubic (FCC) arrangement to pack as many 107-radius spheres
within the observable universe, as we’re trying to check every region within the observable universe, all
of which has the radius of our range. We’ll also assume that travel between spheres while checking atoms
constantly covers the empty regions around them, so their consideration has a negligible effect on the time
taken. Given that φ = 0.74, the number of 107-radius spheres that can be packed within the observable
universe, η, is determined as follows:

η =
Vuφ

107

=

(
3.56641 · 1080

)
(0.74)

107

≈ 2.63914 · 1073

Visually, you can observe that the average distance between spheres in an FCC packing is 2r = 2 · 107:

Figure 9: A very small set of spheres packed in an FCC arrangement.

In order to scan every atom, you would have to travel between every sphere, scan all the atoms within
the sphere, and then move on to the next, repeating the process for every sphere. The time it takes to
travel from one sphere to the next and scan all the atoms within that sphere, t1, is determined as follows:

t1 =
2 · 107

3 · 108
+
(
2.4338 · 106

) (
10−9

)
≈ 0.06910s

Now repeating this for every sphere we have in order to find t:

t = t1η

= (0.06910)
(
2.63914 · 1073

)
= 1.82366 · 1072s
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As you might reasonably expect, the travel time adds two magnitudes onto the answer. The difference
between 1070 and 1072 may not seem like a lot, but it is extremely considerable – you may very well be
able to run a 5K, but could you do a 500K?

This obviously represents the amount of time to have searched 100% of all atoms in the observable
universe. It may very well be, with your amazing luck and genius, that you discover the atom I’ve hidden
within a fraction of that time.

I have some catastrophic news, though. Due to the accelerating expansion of the universe (specifically,
the expansion of the space between interstellar objects), for every megaparsec (Mpc, about 3.26 · 106 ly)
of distance from an observer, a galaxy appears to be receding at roughly 67-73kms−1. Let’s say you’ve
covered 5% of the search area, and so about 1071 seconds have passed. At that time scale, the universe’s
expansion will have massively accelerated due to dark energy, leading to exponential expansion.

In the far future, the Hubble parameter (which denotes the rate at which objects in the universe
are moving away from each other) will asymptotically approach 57km s−1 Mpc−1, decreasing from its
current value of about 70km s−1 Mpc−1 [13]:6

The relationship between the scale factor of the universe a(t), the Hubble parameter H, and cosmic
time t, is represented as such:

a(t) ∝ eHt

Figure 10: A graph showing how the scale factor of the universe changes with time. The different lines
represent the expansion rates with different values for the matter density of the universe, which is a
current topic of debate.

Assuming that you will have stayed in roughly the same position relative to a galaxy on the opposite end
of the universe, which is nearly entirely true, the factor by which the galaxy will have recessed by, D(t)
is approximately this number:7

D(t) ≈ e(1.8·10
−18)(1071)

= e1.8·10
53

This number is so incalculably large that I’ve resorted to telling you to go to Appendix 4.3 to demonstrate
how large this is. An attempt to try to calculate how long it would actually take considering this would
be fruitless; I may as well say infinity.

I have just one question, though. Did you think about scanning yourself?

6Yes – despite the fact that the Hubble parameter is decreasing, the rate of expansion of the universe is still accelerating.
This is because while the expansion per distance (the Hubble parameter) is slowing down, the distances themselves are still
increasing. Since expansion depends on both the rate per unit and the total distance, and the increasing distances outweigh
the drop in the Hubble parameter, the rate of expansion is still accelerating.

7I am ignoring other numbers in this calculation as they’re massively outweighed.
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2.3 ...while writing this essay?

The following bite-sized estimation problems are all based on some aspect of the writing of this essay so
far. Currently, there are 4786 words and 33794 characters in the LATEX code, which is obviously due to
increase, but I can’t accurately predict how many I’ll finish off with, and recalculating after I’m done
isn’t as fun as continuing on to the problems I’ve planned for next.

Let’s dig into estimating now, and apologise to future-me for losing my sanity later.

2.3.1 How much weight have I lost...

Question: Through the physical activities I have conducted creating this essay, how much
weight have I lost?

Response: Counterfactually, the answer is negative. Realistically, it’s just the weight of my
expectations.

Since August of 2024, I’ve managed to lose 23.8kg, bringing my weight down from 101.6 to 77.8kg. The
improvements to my health, mental and physical, have been astronomical. So, naturally, the best way
to supplement that is to spend my time holed up in my room, endlessly typing away, trading kilos for
keystrokes.

A 185-pound (83.9kg) person burns 61 calories per 30 minutes spent doing “computer work” [14]. I’m
not quite at that weight, so I’ll gratuitously assume I burn 56 calories per half-hour.

An estimation of the time I’ve spent on this essay can be obtained by looking at its history. I discovered
this competition fairly late, and so the majority of it is a cram, but the time I’ve spent on it so far in
minutes, t, is as follows:8

t = 388 + 161 + 34 + 8 + 339 + 51 + 182 + 154 + 102

= 1419 minutes

The following calculation to determine c, the number of calories burned, is quite straight-forward:

c =
1419

30
· 56

= 2648.8 kcals

This is a genuinely surprising result! It turns out I have burned far more calories sitting at my desk and

(a) Me, before the half-marathon (b) Me, after the half-marathon

8I really have enjoyed spending all this time writing this.
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typing, compared to when I ran the Hampton Court Half Marathon a few weeks ago (where I burned
1728 kcals).

In order to lose 1kg of fat, you must burn 7700 more calories than you consume. Ignoring the fact
that this considers total daily energy expenditure – the number of calories consumed subtracted by
the number burned – the mass of fat lost is calculated as such:

m =
2648.8

7700
= 0.344 kg

To my continued fat loss prospects, though, it’s such a pity that Nando’s exists.

2.3.2 How many seconds would elapse for a monkey...

Question: If a monkey were to type characters at random, how long would it take for it to
eventually type this essay so far?

Response: You’d better take this over trying to find my atom.

The infinite monkey theorem states that a monkey hitting keys independently, and at random, on a
keyboard for an infinite amount of time will almost surely type any given text, including the complete
works of William Shakespeare.

The “monkey” isn’t actually real. It stands in for an abstract device that produces an endless random
sequence of letters and symbols, with each proceeding character input independently to the previous, and
with all keys having an equal probability of being pressed. So, assuming spherical monkeys in a vacuum...

To level the playing field, I will allow my monkey, who I’ll call Bob, to use my exact setup. There
are 110 keys on my keyboard, and yes, I counted them all. I’ve also permitted it to not have to bother
with LATEX file management by doing it for them, so all they will have to worry about is typing the essay
using a keyboard.

I’ll assume that Bob has a consistent typing speed of 600 characters per minute (CPM), which is
highly above average. As mentioned above, Bob has to type every one of the 33794 characters on my
essay accurately, and in the correct order. The probability of Bob typing in a single button and getting
it correct, c1, and the probability of typing the whole essay successfully, c33794, are determined as such:

c1 =
1

110

⇒ c33794 =

(
1

110

)33794

≈ 10−68986.82

I think we’re being unnecessarily harsh on Bob though. I’ve certainly made typos throughout this essay
and had to go back and correct them – why can’t he?

To give Bob a better chance, we could model this scenario binomially. This is because each key
press is independent of the other, each key press is its own Bernoulli trial (it either matches my essay,
succeeding, or doesn’t, where it fails), and the probability of matching or not is constant throughout.
While you may be right to question whether there are a fixed number of trials, we can model this slightly
differently by considering 33794 trials (each trial being an individual key press) with a 1

110 chance of
success. Calculating P (33793 successes) essentially gives us the probability that, for any given attempt,
it will have one typo, and this can be done with any number of typos nt where you calculate P (33794−nt

successes).
Let the random variable X denote the number of correctly typed characters in one attempt to generate

the essay:

X ∼ B

(
33794,

1

110

)
We can then begin to evaluate the probabilities of a certain number of typos in a given attempt using
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the binomial formula:

P (X = x) =

(
n

x

)
px(1− p)n−x

⇒ P (X = 33793) =

(
33794

33793

)(
1

110

)33793 (
1− 1

110

)33794−33793

= 33794

(
1

110

)33793 (
109

110

)
=

3683546

110

(
1

110

)33793

=
(
3683546 · 110−1

) (
110−33793

)
≈ 5.51904 · 10−68981

⇒ P (X = 33792) =

(
33794

33792

)(
1

110

)33792 (
1− 1

110

)33794−33792

= 571000321

(
1

110

)33792 (
109

110

)2

= 560665687.1

(
1

110

)33792

≈ 1.01645 · 10−68974

Figure 12: The binomial probability distribution for X ∼ B
(
33794, 1

110

)
. Note how the average number

of correct characters is roughly 307, with the graph flattening out to practically 0 as it moves towards
33794. This shows just how immensely unlikely a successful attempt is.

You can fairly easily see how you could decrease the number of correct inputs needed, which increases
the probability by a few orders of magnitude (yet it still remains astronomically small). Let’s say we’ll
allow the monkey to make mistakes on 1% of the essay, meaning that Bob can make a maximum of 337
mistakes. We would like to determine P (X ≥ 33794− 337) = P (X ≥ 33457), which can be done as such:

P (X ≥ 33457) =

33794∑
k=33457

P (X = k)

=

33794∑
k=33457

(
33794

k

)(
1

110

)33794 (
1− 1

110

)33794−k

≈ 1.64178 · 10−68170

This answer is hundreds of orders of magnitude larger, yet still unfathomably small. These, unfortunately,
are the best odds Bob’s got. The number of trials t needed to have a cumulative 100% probability of
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typing this essay so far is obtained by a simple calculation:

t =
1

1.64178 · 10−68170

≈ 6.09095 · 1068169

We’d now stand to benefit most from figuring out the average duration of an attempt. To start off
with, we’d need to find the expected number of characters typed until the 337th typo occurs. This is
captured perfectly with a negative binomial distribution. Where E[X] denotes the expected number
of characters typed until nt > 337 and p represents the probability of a typo, if we know the probability
of a typo is 1− p, on average it will take 1

1−p trials to get one failure. For r failures:

E[X] = r · 1

1− p

=
r

1− p

=
337(
109
110

)
≈ 340.09174

For every attempt, Bob will type ∼ 340 characters before failure occurs. Hilariously, this does mean that
for the average attempt, Bob only types 3 correct characters. Poor you...

The following calculation to find out the time needed to complete one trial, T1 and then to complete
all of them, Tt, is fairly straight-forward:

T1 =
340.09174

600
= 0.56682minutes

= 34.00917 s

⇒ Tt = T1t

= 34.00917 ·
(
6.09095 · 1068169

)
= 2.07148 · 1068171 s

This number is so incomprehensibly large that not even WolframAlpha wants to evaluate it!
That being said... between this and the atom, I’d still pick this.

2.3.3 What impact have I had on global warming...

Global warming poses one of the most serious long-term civilisational risks to humanity in recorded
history. Since record-keeping began in 1880, global surface temperatures have increased by 1.28◦C, with
the last decade being the warmest on record [15]. Although writing this essay has been a joy, I would be
lying if I said my computer’s power consumption wasn’t solely responsible for this.

Figure 13: My power supply, the Corsair RM850.

My computer does not draw the full capacity of my 850W power supply throughout its running, however.
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That being said, considering that I have a screen that runs at 240Hz as well as a power-hungry CPU and
GPU, I’ll (rather unsubstantiatedly) assume that my computer constantly draws 250W when browsing –
or in this case, just typing the essay up. Using the figure for the time obtained from 2.3.1, we can figure
out my total energy use, E:

t = 1419minutes

= 85140 s

⇒ E = 250t

= 21285000 J

The UK’s fuel mix is comprised of 6.3% coal and 35.0% natural gas [16], with the remainder being
nuclear or renewables (which have negligible greenhouse gas emissions). This means that the amount of
the energy used to write my essay that came from coal, Ec, and that came from natural gas, Eg, are:

Ec = 21285000 · 0.063
= 1340955 J

Eg = 21285000 · 0.35
= 7449750 J

A commonly used type of coal is bituminous coal, which produces ∼ 24 000 000Jkg−1 when burned. This
is about 70-80% carbon by weight, so we will use 75% for this estimate. This means that 1kg of coal
contains 0.75kg of carbon.

We must now, unfortunately, deep dive into your PTSD from GCSE Chemistry. Feel free to gloss
your eyes over the next few lines!

The combustion of carbon is expressed as this chemical reaction:

C +O2 → CO2

The Ar (relative atomic mass) of carbon is 12 gmol−1, and the Ar of CO2 = 44 gmol−1. As the units
need not be converted, 1 kg of carbon produces 44

12 · 1 = 3.6̇ kg of CO2. Therefore, 1 kg of coal would
produce 0.75 · 3.67 = 2.75 kg of CO2. A quick calculation with the energy output of 1 kg of coal shows
that the CO2 per joule ≈ 1.15 · 10−7kgJ−1. This leads to a carbon dioxide emission from coal of(
1.15 · 10−7

)
(1340955) = 0.15421 kg.

We’ll use methane as a model for natural gas, with a combustion energy of ∼ 50 000 000 kg−1. The
combustion of methane is expressed in this chemical reaction:

CH4 + 2O2 → CO2 + 2H2O

One mole of CH4 (16 g) produces 1 mole of CO2 (44 g). So 44
16 = 2.75 g of CO2 per gram of methane,

and so 1 kg of methane produces 2.75 kg of CO2. This is the same as for coal, but when you calculate it
considering the energy output of 1kg of methane, you get 5.5 · 10−8 – half as much CO2 release as coal.
Anyway, this leads to a carbon dioxide emission from methane of

(
5.5 · 10−8

)
(7449750) = 0.40974 kg.

The total CO2 emissions from both energy sources, C, is simply calculated by addition:

C = 0.15421 + 0.40974

= 0.56395 kg

Phew! If your eyes started rolling, you can place them back over the text now.
Over all of recorded history, humans have emitted 1.21122 · 1016 kg of carbon dioxide into the at-

mosphere (which I obtained by summing values on the spreadsheet here [17]). This means that my
percentage contribution to global warming, G, is as follows:

G =
0.56395

1.21122 · 1016
· 100

≈ 4.65602 · 10−15

This number, expressed in long form, is 0.00000000000000465602%.
Phew, the Earth gets to live another day!
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2.4 Simian Suffering for an S-Rank

Question: If I give the monkey Bob my exact setup and open the rhythm game osu!, how
likely is it that for a given song, he will obtain an S-rank?

Response: Well, let’s just say that his accuracy is absolutely bananas.

osu! is a rhythm game about clicking circles that appear on the screen to the beat of music playing in
the background. The objective of the game is to be as accurate as possible in terms of aim (ensuring that
your cursor is within the area of the hit circle) and timing (ensuring that you tap the hit circle at just
the correct time), aided by “approach circles” that appear and close in on hit circles, where you have to
tap as soon as the approach circle makes contact with the hit circle.

Figure 14: Two hit-objects in osu!. One of them is a circle, which only requires a timely tap. The
other (towards the top left) is a slider, which requires a tap followed by holding down the input key and
following a “slider ball” until you reach the end of the slider.

Tapping a circle at a slightly incorrect time leads to a small drop in accuracy, which is measured as a
percentage with the maximum being 100%. Tapping with a more incorrect time leads to a greater drop
in accuracy. If your cursor is not on the note when it’s due to be hit, or you hit far too early/late, the
note is “missed”, which causes an even greater drop in accuracy and disqualifies you from being able to
receive an S-rank.

The ranking system in osu! is as follows:9

• SS: 100% accuracy. All notes are hit with perfect accuracy with no misses.

• S: ≥ 95% accuracy. No misses are permitted.10

• A: ≥ 90% accuracy. Any amount of misses are permitted as long as it doesn’t take the accuracy
below the threshold.

• B: ≥ 80% accuracy.

• C: ≥ 70% accuracy.

• D: < 70% accuracy.

We must make some assumptions about the beatmaps (the songs, which have hit circles and sliders
mapped to their beats) before continuing. Most beatmaps in osu! are two minutes long, and so have
roughly 250 sliders and 250 circles respectively.11 We’ll also let the circle size be 4, and the overall
difficulty 8.5, which are both arbitrary designations to the amount of space circles take up on the screen,

9In osu!lazer.
10Slider breaks, where you let go in the middle of a slider, are permitted, which is why I’ve ignored them in this estimation.
11For simplicity’s sake, we are assuming that this song does not have spinners.
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and the size of the timing windows involved for a perfect, slightly imperfect hit, very imperfect hit, and
a miss, respectively.

The playfield in osu! is 512 by 384 units wide. The published formula for the radius of a circle in
units can be used to work out the area of it, A, followed by what fraction F of the playfield the circle
covers:

r = 54.4− (4.48 · circle size)

= 54.4− (4.48 · 4)
= 36.48

A = πr2

= π(36.48)2

≈ 4180.80134

F =
4180.80134

512 · 384
≈ 0.02126

Let’s go through the requirements for an S-rank one more time. Bob must successfully aim at every hit
circle and obtain an accuracy above or equal to 95%. Well, for every instance of a note (a circle or slider)
we know how likely it is that Bob will successfully aim at it, as it’s just 0.02126. As for accuracy, that’s
a lot more complicated.

In osu!, the degrees to which you’re accurate are determined by certain categories – a 300 is a perfect
hit, a 100 is a slightly mistimed hit (either a bit too early or late) and a 50 is a very mistimed hit. Where
n300 denotes the number of 300’s hit, with the same applying for n100 and n50, the accuracy formula is:

Accuracy =
300n300 + 100n100 + 50n50

300(n300 + n100 + n50 + nX)

⇒ 0.95 ≤ 300n300 + 100n100 + 50n50

300(500)

142500 ≤ 300n300 + 100n100 + 50n50

2850 ≤ 6n300 + 2n100 + n50

The task is to now find all values n300, n100, n50 ∈ Z+ that satisfy this system of equations:{
2850 ≤ 6n300 + 2n100 + n50

500 = n300 + n100 + n50

This is obviously immensely impractical. While it is technically possible to model the probability of
achieving an S-rank through multinomial distributions, doing so would not only require evaluating a
hyper-dimensional inequality but also potentially losing my sanity in the process. Bob isn’t worth it.

What we do know is, when input into WolframAlpha, the lowest-bound solution for n300 is:

462.5 < n300 ≤ 500

We can use this value as a proxy for what we’re trying to achieve; in this case, we’ll simply declare that
463 300’s qualify Bob for an S-rank, even though under small edge cases where he also hits many 50’s, it
would be slightly under 95%. It suffices for a Fermi estimation problem, at the very least, even if it isn’t
so mathematically rigorous. Furthermore, we’ll know for a fact that our answer will be an overestimate.

So, in a given attempt, how likely is Bob to get above 463 perfect hits? First, let’s work out our
probability of hitting the note perfectly. The formula for the hit window (in milliseconds) can be used to
work out the probability of a perfect hit, Pp, as such:

For a 300: hit window = 80− (6 · overall difficulty)

= 80− (6 · 8.5)
= 29ms

= 0.029 s
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At any given time there is likely a note on the screen, and so any random hits would likely fall within at
least the 50 range. The monkey is also probably randomly mashing the keyboard. As a result, we can
assume that the range of hit opportunities lie within said range. Continuing on with this:

For a 50: hit window = 200− (10 · overall difficulty)

= 200− (10 · 8.5)
= 115ms

= 0.115 s

From there, the probability of hitting a 300 is very simple:

Pp =
0.029

0.115
= 0.25217

Now, the probability of Bob aiming correctly and hitting a 300 is obtained, H1 through easy conditional
probability:

H1 = 0.25217 · 0.02126
≈ 5.36122 · 10−3

Let’s head back to our binomial distribution – let the random variable Y denote the number of correctly
timed hits in one attempt to play the song (assuming perfect aim):

Y ∼ B
(
500, 5.36122 · 10−3

)
We are trying to work out P (Y ≥ 463) Using the same technique as before:

P (Y ≥ 463) =

500∑
k=463

P (Y = k)

=

500∑
k=463

(
500

k

)(
1

110

)500 (
1− 1

110

)500−k

≈ 2.105 · 10−965

Hey, man! It’s better than Bob writing my essay... maybe he has a future in something after all!12

2.5 The Weight of What Was

Question: How much does the average relationship weigh?

Response: When you lay awake at night, do I ever cross your mind? ’Cause you still cross
mine...

A relationship is a living manifestation of its participants’ combined beliefs and ideologies. Evolutionarily
speaking, humans are integrally geared towards maximising their chances of finding and securing a mate.
Your body does this through the targeted releasing of a neurochemical cocktail designed to spark attrac-
tion and closeness, bond you long enough to support offspring, and to make you irrationally attached to
a fellow human being.

A cascade of dopamine, oxytocin, and vasopressin marries you to someone else’s memory, deliberately
designed to hijack your brain, even if the person in question no longer exists to you.

The average relationship lasts 17.2 months (1 year, 5 months) [18], and feelings of emotional distress
largely subside after roughly 9 months after a breakup, although this varies massively.

It is hilariously impossible to estimate the precise volume to which “love chemicals” are released
within our bodies, let alone along an entire relationship. But when did that ever stop us?

The key chemicals involved (for which their changes are at all discernible) are listed as follows:

• Dopamine: Normal plasma concentration of ∼ 10-50pgml−1 (picograms per millilitre), which
equates to a total mass of roughly ∼ 0.05-0.25µg in human blood.

12For further investigation: how likely is it for him to set a score comparable to the likes of top players?

18



• Oxytocin: Normal plasma concentration of ∼ 1-10pgml−1, which equates to a total mass of roughly
∼ 0.005-0.05µg in human blood.

• Norepinephrine: Normal plasma concentration of ∼ 100-400pgml−1 (picograms per millilitre),
which equates to a total mass of roughly ∼ 0.5-2µg in human blood.

Figure 15: The brain regions activated (orange) and deactivated (blue) while listening to stories of love
(left) and imagining (right) feelings of love for different objects as contrasted with neutral control stories.

During the course of a relationship, the concentrations of these chemicals within the bloodstream fluctu-
ates wildly. We will assume that during a “love event”, these chemicals increase threefold. This means
that the total mass of the chemicals increases from ∼ 0.3025 to 22.6875µg.

A “love event” is probably one of the most vague things I have stated during this essay, and so many
things here have been vague. Generally, a combination of distinct thoughts, direct interactions, emotional
spikes and deliberate expressions put this in the ballpark of 20-30 events per day.

I’ve always thought of a breakup as a curve that asymptotically approaches 0, but never quite hits
it. Funnily enough, the exponential decay curve I’m imagining matches the format for our Eiffel Tower
taper!

f(t) = aebt

In this case, a represents the initial intensity (the emotional spike, 22.6875 · 25 = 22.6875, assuming the
emotions start off at the same frequency and intensity as in the relationship, perhaps just negative feelings
now), which likely matches the max threefold increase of chemicals, b, the decay constant, denotes how
fast you’re able to “move on”, and t represents time, in days. Let’s gratuitously assume that after 9
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months (270 days), f(t) reduces to 5% of its original value. As, at the start, f(t) = 22.6875:

f(270) = (22.6875 · 0.05) = 22.6875e270b

1.134375 = 22.6875e270b

0.05 = e270b

ln 0.05 = 270b

ln 0.05

270
= b

≈ −0.0110953

Therefore, our breakup exponential decay equation is:

f(t) = 22.6875e−0.0110593t

Figure 16: The graph f(t) = 22.6875e−0.0110953t. If you somehow fit the niche of a heartbroken person
and a maths nerd, you should soon observe tears falling from your eyes soon.

All we need to do is simply integrate that between t = 0 and 270! This will give Cb, the mass of
chemicals released by the body during a breakup. We can use the exact same technique as in our Eiffel
Tower estimate:

Cb =

∫ 270

0

f(t) dt

=

∫ 270

0

22.6875e−0.0110953t dt

= 22.6875

∫ 270

0

e−0.0110953t dt

= 22.6875

[
1

−0.0110953
e−0.0110953t

]270
0

= 22.6875

[
1

−0.0110953

(
e−0.0110953[270] − e−0.0110953[0]

)]
= 22.6875

[
1

−0.0110953

(
e−2.995731 − 1

)]
=

22.6875

−0.0110953

(
e−2.995731 − 1

)
≈ 22.6875

−0.0110953
· −0.95

≈ 1942.54549µg

Calculating the mass of chemicals released over the duration of an average relationship, Cr and then
total, Ct, is fairly simple:

Cr = (22.6875 · 25)(516)
= 11706.75µg

⇒ Ct = Cr + Cb

= 11706.75 + 1942.5459

≈ 13649.29549µg

≈ 0.01365g
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The thing that struck out to me in particular was the difference in masses between the chemicals released
during the course of a relationship, and the chemicals released during a breakup. This could very well
be a reflection of my poor maths and rampant idealised assumptions, but I think it signifies something a
lot more profound.

The total mass of all chemicals released in the body during a relationship – a proxy for the all
the illuminating waves of feelings and emotions that run through you – was calculated to be roughly
12 000µg. Contrastingly, and almost symbolically, the mass of the chemicals released following a breakup
was 6 times lower, at roughly 2 000µg. The variation behind these numbers is absolutely immense, and
I’m very confident that there’s a strong possibility that they’re completely incorrect (and such are the
beauty of Fermi estimations), but the fact that the sum total of all of those transformational positive
experiences and feelings is half an order of magnitude higher than the ruinous pain that follows from a
breakup is so, immensely telling.

It is melancholy to know that people you come to love will dip into and out of your life, but from
them you will retain lovely pieces and memories. You will be forever shaped by the powerful experiences
you have with them, and by far that occurs for the better, even despite the immense emotional turmoil.

Lest you otherwise turn into me, someone crying onto their maths-laden napkin at four in the morning.
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3 Conclusion

I’ve either made Enrico Fermi very proud, or he’s currently rolling in his grave.
I hope you’ve enjoyed reading these very unusual and perhaps funny problems as much as I have writing

them! This essay is quite long but isn’t necessarily intended to be read as a whole – each estimation
problem is its own little piece that can be read completely on its own. I’ve drawn each question from
something I’ve found interest in and I really loved coming up with them and conjuring up methods to
solve the unsolvable.

Fermi problems may seem like a bit of a party trick at this point. After all, if you’ve read everything
up to here, you’ll have been watching me explain how to use a binomial distribution to model the time it
takes for a monkey to type this essay, or how you can use calculus to figure out the volume of the Eiffel
Tower so that I can shove tennis balls inside of it.

However, they do really have uses in real-world applications:

• They can make you more confident on the decisions you make: instead of relying on vibe-based
guesses, a quick back-of-the-hand calculation could give you a very reasonable answer when you
don’t have enough information.

• They’re used almost like sanity checks in STEM: results can quickly be checked for if they’re
reasonable – such as when I compared my Eiffel Tower square-based pyramid volume to the solid
of revolution’s volume.

• Organisations, such as effective charities, use these rough calculations to determine how cost-
effective a particular intervention is, which is especially useful in global-scale issues where exact
numbers are impossible to determine. This allows them to better decide where funding should be
spent, which can quite literally save more lives.

• During emergency situations, Fermi logic gives a ballpark estimate fast before full data is available.
For example, during COVID-19, early models estimated infection spread by using approximate
reproduction numbers and assumptions about transmission, which helped governments make early
policy decisions.

So perhaps, unlike Sir Isaac Newton, I haven’t solved the mysteries of the universe – but at least I’ve
managed to produce a marginally entertaining essay about monkeys, tennis balls, France’s most iconic
landmark, and love.

And I have, at least, proven that you can know a lot without knowing anything.
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4 Appendix

4.1 But what is sphere packing?

Mathematicians love weird, niche, and oddly specific things. In this case, it is the desire to pack as many
balls in a container as possible, without squashing or deforming them, in perfect Euclidean harmony.
Aside from the fact that many seemingly abstract problems in maths, such as this one, have had real-
world, impactful effects, these problems are also genuinely fun to work on.

The least efficient sphere packing method is obtained by increasing the spacing between spheres
arbitrarily, i.e. the worst thing you could do is place one sphere in a container, and then give up. That’s
not a very fun answer though!

The (most realistic)13 worst packing is typically random loose packing, with an average efficiency
(denoted by φ) of ∼ 0.55. This typically occurs when you dump many spherical objects into a container,
which (especially when there are high amounts of friction between them) causes jamming and many
empty gaps between spheres. In this arrangement, 55% of the container’s volume is occupied by the
spheres, whereas the remainder is just empty space; voids between the balls. Products containing loosely
packed items are often labelled with the message, “contents may settle during shipping”. This is because
during shipping, the bumping of the container leads to the packing density of the items inside to increase,
making it appear as though the container isn’t actually full as the items inside now take up less space.
The message is therefore added as an assurance to the consumer that it’s full, just on a mass basis.

Figure 17: A visualisation of what random packing looks like compared to close packing. [19]

The shaking or bumping of a container which has items randomly and loosely packed into it leads to
the next packing arrangement in the hierarchy – random close packing (RCP). In this arrangement,
φ ≈ 0.64, and the higher packing efficiency can be attributed to how spheres, when shaken, can move past
others (overcoming frictional forces) to move to a more energetically stable state. Specifically, they slide
into lower positions and tighter spots, reducing gaps and increasing the number of contacts per sphere.

In order to obtain higher packing efficiencies, randomness no longer suffices. The densest packing
arrangements, hexagonal close packing and face-centred cubic packing, have φ ≈ 0.7408, and is
obtained by combining layers of compactly arranged spheres in a specific way.

Figure 18: A visualisation of hexagonal close packing. [20]

13There exist even worse packings that stay strictly jammed, i.e. all spheres are constrained by their neighbours to stay
in one location, with the worst having a value of φ ≈ 0.49365.
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4.2 Watching Entropy Win

This explanation is heavily inspired by Scott Czepiel’s writings on how big 52! is, which I have referenced
here [21].

Imagine setting a timer for 8.7 · 1070 seconds and that, beyond all logic, you are standing on the
equator of the Sun. To help pass the time, you decide to play a game.

You start by waiting one million years, before then playing the UK National Lottery. If you lose, you
wait another million before playing another one. When you win, you can take one step forwards, wait
another million years, and then repeat the same steps. Once you have finally walked around the entire
circumference of the Sun, remove one gram from its mass, and then do the same thing again, waiting a
million years before playing another lottery ticket, and if you win you take one step forwards...

Once you have removed all of the Sun’s mass, draw 5 playing cards. If they are anything other than
a royal flush, replace the Sun’s mass, and repeat all the steps above. When you finally get a royal flush,
check your timer. This is (almost certainly) how much time you have left:

7.9 · 1070s

You would have to repeat this entire process about 11 times to finally drain out the timer. And that’s
for the absolute lower bound estimate... yet before you could even win your first lottery ticket, the Sun
would likely already have turned into a red giant and dissipated, ruining the game. In fact, every star
in the observable universe will have died by the time you have walked around the Sun for the first time,
and smaller black holes will have been extinguished due to Hawking radiation by the time you’re finally
done.

4.3 Watching Entropy Lose

There is no activity in the world that I could give you to pass the amount of time it takes to cover the
distance e1.8·10

53

. You could repeat the process detailed in Appendix 4.1 a googol times, and still not
even come close to passing a billionth of the time it takes to cover that distance. Travelling at the speed
of light through it would help, but with respect to the sheer magnitude of this number, you may as well
be travelling at 1ms−1. It makes no difference. What I will do is list out the events that proceed in the
far future of the universe, until e1.8·10

53

seconds14 elapse:

• 180 million years: Due to the gradual slowing of Earth’s rotation, a day will be one hour longer
than it is today.

• 2.8 billion years: Barring all human advancement, all remaining life has certainly gone extinct due
to the Sun’s rising temperature.

• 5.4 billion years: The Sun is no longer a main sequence star, and has become a red giant.

• 8 billion years: The Sun becomes a white dwarf with half its original mass.

• 1014 years: All star formation ends in galaxies, marking the transition to the Degenerate Era. At
this point, the universe has expanded by a factor of 102554. A short while after this point, all stars
in the universe will have exhausted their fuel, and the only stellar-mass objects remaining will be
remnants (white dwarfs, neutron stars, black holes, brown dwarfs).

• 1038 years: If proton decay can occur, all remaining planets and stellar-mass objects will have done
so.

• 10110 years: All black holes, including ultramassive black holes, will have decayed due to Hawking
radiation.

• 101500 years: Assuming that protons do not decay, all matter will have fused together to form
iron-56 or decayed from a higher mass element into iron-56, forming iron stars.

• 1010
26

years: Around this time, all iron stars have collapsed via quantum tunnelling into black
holes (assuming proton decay does not occur). The subsequent evaporation of these black holes
into subatomic particles is instantaneous on this time scale.

14This could be expressed in nanoseconds or star lifespans – this number is so big that the timescales have become
completely irrelevant.
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• 1010
50

years: The estimated time for a Boltzmann brain to appear in a vacuum via a spontaneous
entropy decrease.

Not even WolframAlpha could evaluate this, but a tedious division process shows that, on average,
107.81·10

52

Boltzmann brains could form before you covered that distance, assuming you were walking at
1ms−1. Travelling at the speed of light would still lead to an incomprehensible number of them forming.
By the time you’ve covered even a fraction of the distance, space would stretch so violently that even
light trying to cross it would be like a tortoise on a treadmill made of molasses. . . on a glacier. . . during
a time freeze.

I would imagine that the original mission – recovering the one atom I’ve hidden – would take so
long due to the universe’s immense expansion, that quantum tunnelling could generate new inflationary
events, leading to new Big Bangs giving birth to new universes. You could watch entropy win, and then
lose, before you’d recover my atom.

I think it’s time to get a better ray gun.
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