The Finite Calculus: Part I Differentiation
Calculus can be seen to have a special connection with the infinitely small, as differentiation is a limiting procedure as something goes to zero. Travelling on the graph from x to x + h, we rise a distance of f(x + h) – f(x) and run over a distance of h. This gets us the average slope over this distance, and we hone in closer and closer to the instantaneous slope at x as h becomes smaller and smaller.
But there is an analogue called finite calculus!
Consider what happens before we pass to the infinite world: we only can examine our function at individual steps. Perhaps something coarse like 1, 2, 3, 4, …; or perhaps something finer like 1, 1.05, 1.1, 1.15, …; but the step size is really not that important (it can be scaled), so we will assume that it is always 1.
Copy and paste this URL into your WordPress site to embed
Copy and paste this code into your site to embed