2018 Fields Medalist Alessio Figalli explains what is was like to be awarded the most prestigious prize in Mathematics…

With thanks to the Heidelberg Laureate Forum.

Maths, but not as you know it…

2018 Fields Medalist Alessio Figalli explains what is was like to be awarded the most prestigious prize in Mathematics…

With thanks to the Heidelberg Laureate Forum.

2018 Abel Prize Laureate Robert Langlands explains his work in the context of theorems versus theories. The second in a series of videos documenting my experience at the 2018 Abel Prize week in Oslo.

With thanks to the Norwegian Academy of Science and Letters for kindly providing me with a scholarship.

I had the honour to sit down with Sir Michael Atiyah to discuss his recently presented proof of the Riemann Hypothesis at the Heidelberg Laureate Forum.

The first in a new feature where I’ll be interviewing some of my students at the University of Oxford about their love of maths for the St John’s College Inspire Programme that aims to provide role models for students at non-selective state schools in the UK. Meet first year student Diamor…

Using the surface tension of water and a hydrophobic coating on their legs, many insects are able to walk on water. The surface tension acts like an invisible blanket across the top of the water, while the hydrophobic coating on the insects legs means that they are repelled from water molecules, much like the repulsion of two magnets with the same pole. By studying the simple case of a hydrophobic sphere being dropped into water from different heights, Daniel Harris and his team at Harvard University were able to improve our understanding of the mechanism of water-walking and use it to help build water-walking robots.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference. Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

A short sneak preview of the full-length ‘Mandelbulbs’ video currently in production. A Koch Snowflake is an example of a 2D fractal with infinite perimeter but finite area. Full details of the calculation in the final video… COMING SOON!

My PhD thesis on modelling the spread of river water in the ocean in its entirety – not for the faint hearted! Unless you are a researcher in fluid mechanics, I strongly recommend reading the summary articles here before tackling the beast below. If you have any questions/comments please do get in touch via the contact form.

Freezing bubbles are not only beautiful, but also demonstrate incredibly complex physics. Here, Professor Jonathan Boreyko explains how bubbles freeze with examples of slow motion videos filmed in his laboratory at Virginia Tech.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

Video of my ‘Teddy Talk’ at the 2019 St Edmund Hall open day.

*Rivers are the major source of pollution in the oceans and if we are to clean them up, we first need to know where the majority of the pollution is concentrated. By creating a mathematical model for river outflows – verified by laboratory experiments and fieldwork – the goal is to be able to predict which areas are most susceptible to pollution from rivers and thus coordinate clean-up operations as effectively as possible.*

Measuring the forces present in an avalanche using light. Amalia Thomas from the University of Cambridge explains how to measure the forces between colliding particles in an avalanche based on their photo-elastic response and refractive index.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

The brazil nut effect describes the movement of large particles to the top of a container after shaking. The same effect also occurs in avalanches where large blocks of ice and rocks are seen on the surface, and in a box of cereal where the large pieces migrate to the top and the smaller dusty particles remain at the bottom. In this video, Nathalie Vriend and Jonny Tsang from the University of Cambridge explain how the granular fingering instability causes granular convection and particle segregation, with examples of experiments and numerical simulations from their research.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference. Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

*A short review of intern Joe Double’s work with Tom Rocks Maths over the summer of 2018. Written for the OUS East Kent branch who provided funding for the project. *

‘First of all, I must thank you again for the grant, and for the warmth and friendliness at your event; it was an absolute delight to give my presentation and talk to your members, as it has been interacting with you in general.

I had the opportunity to work with one of my tutors over the summer to produce pieces for a general audience about complex mathematical topics. Without the help of the OUS East Kent group, I couldn’t have taken up this opportunity – with their grant’s help, I was able to afford to live in Oxford through a large part of the summer, allowing me to work in close contact with my tutor and use his studio for creating the videos and audio pieces I worked on. The OUSEK grant can be put to use far more flexibly than those from bigger schemes (which always have preconditions to meet about how the project will apply to industry, say), so I couldn’t recommend applying more if you have an idea for a project for your time at Oxford which is on the unusual side!’

Pieces I produced during the project:

Why do Bees Build Hexagons? Honeycomb Conjecture explained by Thomas Hales

A video I edited of Tom (my tutor) interviewing Thomas Hales about the mathematics behind beehives.

Would Alien (Non-Euclidean) Geometry Break Our Brains?

My main video, written, filmed and edited by me, about demystifying non-Euclidean geometry.

My main audio piece, where I interview Professor Adrian Moore (also of St Hugh’s) about what philosophy can tell us about how aliens might do maths.

Maths proves that maths isn’t boring

An article about Gödel’s incompleteness theorems, and how they show maths is always risky.

An audio piece I edited about a tattoo Tom got of the Platonic solids.

Alien maths – we’re counting on it

An article about how we use the mathematics of prime numbers to send messages to the stars.

An article about a game theory paper which could amongst other things help stop deforestation.

*The original article was published on the OUS East Kent website here.*