Listening to Tornadoes to increase warning times and save lives

Before a tornado forms the pressure drop at the centre emits a dull tone at 5-10Hz which can be detected hours before it becomes dangerous. Brian Elbing at Oklahoma State University has devised a detection system that works up to 300 miles away from the source and can predict the size and strength of the tornado before it forms, providing advanced warning for at-risk areas.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

How to Reduce Drag when Cycling

Cyclists can use up to 90% of their energy overcoming drag, which was the motivation behind the work of Ivaylo Nedyalkov at the University of New Hampshire, who was able to measure the force on each individual cyclist in a train formation to determine the best position to reduce your overall drag.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

Stopping the spread of oil pollution using Maths

Following the Deepwater Horizon oil spill in 2010, scientists at the University of Cambridge have been studying underwater plumes to try to understand how the Earth’s rotation affects the spread of oil. Their experiments revealed the important role played by conservation of angular momentum after one rotation period, emphasising the importance of a rapid response to a disaster.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

Simulating turbulence over canopies to improve air quality

By improving our understanding of turbulent flow over canopies we can design better cities to improve air quality – just one of the applications of the work of Alfredo Pinelli, a professor at City University of London working on Large Eddy Simulations (LES) of turbulence.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

How do citrus fruits create such a strong smell?

Citrus fruits contain small pockets of liquid which burst upon contact releasing a jet of strong smelling oil into the air. The strong smell is designed to attract animals to the site to help to spread the seeds of the fruit as far as possible. Andrew Dickerson at the University of Central Florida has recorded the squirting motion using high speed cameras to try to understand the exact process of these ‘micro-jets’ of citrus oil.

 

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

Levitating Objects on an Air Table

Air-tables create a thin film of air capable of supporting objects and causing them to levitate. By adding grooves to the table or the object, Professor John Hinch at the University of Cambridge was able to control the objects motion and describe the resultant acceleration in terms of a simple scaling relationship involving gravity and the aspect ratio.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

How do Insects Walk on Water?

Using the surface tension of water and a hydrophobic coating on their legs, many insects are able to walk on water. The surface tension acts like an invisible blanket across the top of the water, while the hydrophobic coating on the insects legs means that they are repelled from water molecules, much like the repulsion of two magnets with the same pole. By studying the simple case of a hydrophobic sphere being dropped into water from different heights, Daniel Harris and his team at Harvard University were able to improve our understanding of the mechanism of water-walking and use it to help build water-walking robots.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference. Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

How do Bubbles Freeze?

Freezing bubbles are not only beautiful, but also demonstrate incredibly complex physics. Here, Professor Jonathan Boreyko explains how bubbles freeze with examples of slow motion videos filmed in his laboratory at Virginia Tech.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

How to Make Water Music – Slap, Plunge, Plow!

Female musicians from the northern islands of Vanuatu use the water surface as an instrument to create a variety of unique sounds – slap, plunge, plow – which they accompany with singing. Each interaction with the water surface produces a different acoustic response corresponding to the air-water-hand interaction, each of which has been studied by Randy Hurd and Tadd Truscott of Utah State University.

Every year the Gallery of Fluid Motion video contest features the newest and most beautiful research in fluid dynamics. Watch all of the Gallery of Fluid Motion videos here: http://gfm.aps.org

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

WordPress.com.

Up ↑