Bees are not only able to build fantastic hexagonal honeycombs they’re apparently also able to count! But do they deserve their reputation as nature’s mathematicians? Georgia Mills spoke to Srini Srinivasan from the University of Queensland to find out how they discovered counting bees…

Bees were trained to fly down a tunnel with a reward of sugar water at the end, and a series of identical landmarks labelled 1, 2, 3, 4, etc. along the route.

One of the landmarks contained the reward and the bees had to test each one to discover its location. This was repeated several times until the bees learned the location of the reward.

The spacing of the landmarks was then changed, but the reward remained at the same landmark, and the bees had to find it once again.

They were able to ‘count’ the number of landmarks and would go straight to the correct location bypassing the others that did not contain a reward.

The highest number of sequential landmarks the bees were able to ‘count’ was 4.

Four is a universal number as when briefly presented with an image containing a number of objects, the largest amount most animals can recognise accurately is 4-5. This process is called subitising.

Counting to 4 is useful for bees when for example deciding whether or not to land on a flower to collect pollen. If there are 3-4 bees already there then it is probably not worth their effort.

Counting has also been looked at in fish birds and chimpanzees, and in each case the number four keeps cropping up, suggesting universality.

The tunnel experiment was actually designed to investigate how bees navigate and the corresponding ‘waggle dance’ that they use to communicate information.

You can listen to the full interview with the Naked Scientists here.

In October 2017, Dr Tom Crawford joined St Hugh’s as a Lecturer in Mathematics. He has since launched his own award-winning outreach programme via his website tomrocksmaths.com and in the process became a household name across Oxford University as the ‘Naked Mathematician’. Here, Tom looks back on the past year…

I arrived at St Hugh’s not really knowing what I was getting into to be completely honest. I’d left a stable and very enjoyable job as a science journalist working with the BBC, to take a leap into the unknown and go it alone in the world of maths communication and outreach. The plan was for the Lectureship at St Hugh’s to provide a monthly salary, whilst I attempted to do my best to make everyone love maths as much as I do. A fool’s errand perhaps to some, but one that I now realise I was born to do.

The ‘Naked Mathematician’ idea came out of my time with the Naked Scientists – a production company that specialises in broadcasting science news internationally via the radio and podcasts. The idea of the name was that we were stripping back science to the basics to make it easier to understand – much like Jamie Oliver and his ‘Naked Chef’ persona. Being predominantly a radio programme, it was relatively easy to leave the rest up to the listener’s imagination, but as I transitioned into video I realised that I could no longer hide behind suggestion and implication. If I was going to stick with the ‘Naked’ idea, it would have to be for real.

Fortunately, the more I thought about it, the more it made sense. Here I was, trying to take on the stereotype of maths as a boring, dreary, serious subject and I thought to myself ‘what’s the best way to make something less serious? Do it in your underwear of course!’ And so, the Naked Mathematician was born.

At the time of writing, the ‘Equations Stripped’ series has received over 100,000 views – that’s 100,000 people who have listened to some maths that they perhaps otherwise wouldn’t have, if it was presented in the usual lecture style. For me that’s a huge victory.

Of course, not all of my outreach work involves taking my clothes off – I’m not sure I’d be allowed in any schools for one! I also answer questions sent in by the viewers at home. The idea behind this is very simple: people send their questions in to me @tomrocksmaths and I select my favourite three which are then put to a vote on social media. The question with the most votes is the one that I answer in my next video. So far, we’ve had everything from ‘how many ping-pong balls would it take to raise the Titanic from the ocean floor?’ and ‘what is the best way to win at Monopoly?’ to much more mathematical themed questions such as ‘what is the Gamma Function?’ and ‘what are the most basic mathematical axioms?’ (I’ve included a few of the other votes below for you to have a guess at which question you think might have won – answers at the bottom.)

The key idea behind this project is that by allowing the audience to become a part of the process, they will hopefully feel more affinity to the subject, and ultimately take a greater interest in the video and the mathematical content that it contains. I’ve seen numerous examples of students sharing the vote with their friends to try to ensure that their question wins; or sharing the final video proud that they were the one who submitted the winning question. By generating passion, excitement and enthusiasm for the subject of maths, I hope to be able to improve its image in society, and I believe that small victories, such as a student sharing a maths-based post on social media, provide the first steps along the path towards achieving this goal.

Speaking of goals, I have to talk about ‘Maths v Sport’. It is by far the most popular of all of my talks, having featured this past year at the Cambridge Science Festival, the Oxford Maths Festival and the upcoming New Scientist Live event in September. It even resulted in me landing a role as the Daily Mirror’s ‘penalty kick expert’ when I was asked to analyse the England football team’s penalty shootout victory over Colombia in the last 16 of the World Cup! Most of the success of a penalty kick comes down to placement of the shot, with an 80% of a goal when aiming for the ‘unsaveable zone’, compared to only a 50% chance of success when aiming elsewhere.

In Maths v Sport I talk about three of my favourite sports – football, running and rowing – and the maths that we can use to analyse them. Can we predict where a free-kick will go before it’s taken? What is the fastest a human being can ever hope to run a marathon? Where is the best place in the world to attempt to break a rowing world record? Maths has all of the answers and some of them might just surprise you…

Another talk that has proved to be very popular is on the topic of ‘Ancient Greek Mathematicians’, which in true Tom Rocks Maths style involves a toga costume. The toga became infamous during the FameLab competition earlier this year, with my victory in the Oxford heats featured in the Oxford Mail. The competition requires scientists to explain a topic in their subject to an audience in a pub, in only 3 minutes. My thinking was that if I tell a pub full of punters that I’m going to talk about maths they won’t want to listen, but if I show up in a toga and start telling stories of deceit and murder from Ancient Greece then maybe I’ll keep their attention! This became the basis of the Ancient Greek Mathematicians talk where I discuss my favourite shapes, tell the story of a mathematician thrown overboard from a ship for being too clever, and explain what caused Archimedes to get so excited that he ran naked through the streets.

This summer has seen the expansion of the Tom Rocks Maths team with the addition of two undergraduate students as part of a summer research project in maths communication and outreach. St John’s undergraduate Kai Laddiman has been discussing machine learning and the problem of P vs NP using his background in computer science, while St Hugh’s maths and philosophy student Joe Double has been talking all things aliens whilst also telling us to play nice! Joe’s article in particular has proven to be real hit and was published by both Oxford Sparks and Science Oxford – well worth a read if you want to know how game theory can be used to help to reduce the problem of deforestation.

Looking forward to next year, I’m very excited to announce that the Funbers series with the BBC will be continuing. Now on its 25^{th} episode, each week I take a look at a different number in more detail than anyone ever really should, to tell you everything you didn’t realise you’ve secretly always wanted to know about it. Highlights so far include Feigenbaum’s Constant and the fastest route into chaos, my favourite number ‘e’ and its link to finance, and the competition for the unluckiest number in the world between 8, 13 and 17.

The past year really has been quite the adventure and I can happily say I’ve enjoyed every minute of it. Everyone at St Hugh’s has been so welcoming and supportive of everything that I’m trying to do to make maths mainstream. I haven’t even mentioned my students who have been really fantastic and always happy to promote my work, and perhaps more importantly to tell me when things aren’t quite working!

The year ended with a really big surprise (at least to me) when I was selected as a joint-winner in the Outreach and Widening Participation category at the OxTALENT awards for my work with Tom Rocks Maths, and I can honestly say that such recognition would not have been possible without the support I have received from the college. I arrived at St Hugh’s not really knowing what to expect, and I can now say that I’ve found myself a family.

Where did the Rubik’s Cube come from? How did it become so popular? And just how many possible combinations are there? Broadcast on BBC Radio Cambridgeshire.

This Christmas themed puzzle was featured on BBC Radio 4’s Today programme as the 375th ‘Puzzle for Today‘. You can listen to the broadcast here at 48:55.

Christmas stamps are sold with the following values 16p, 17p, 23p, 24p, 39p and 40p. You want to send a present which has a postage cost of £1.00. How many stamps do you need to buy to make the exact amount?

New research shows that most parents can’t help their kids with maths homework because they have a fear of numbers. Here’s me being asked about the problem (and setting the presenters a farm animal themed maths puzzle) along with Martin Upton of the Open University on BBC Radio Scotland…

From the number of children of composer Johann Sebastian Bach, to the number of championships won by Manchester United, its fair to say that 20 gets around. Then there’s the 1920’s, seen as a time of boom and bust with the creation of jazz music followed by the great depression. Not to mention the Mayan counting system which uses base 20…

You can find all of the episodes in the Funbers series with BBC Radio Cambridgeshire and BBC Radio Oxford here.

The 1900’s saw inventions that made a BIG change to our lives. Aeroplanes in 1903 changed the way we travel, TVs in 1925 changed home entertainment, and Microwaves in 1946 changed the way we eat. Nineteen also played an important role in the British Civil War and was the title of Adele’s first album…

You can listen to all of the Funbers episodes from BBC Radio Cambridgeshire and BBC Radio Oxford here.

Time to celebrate with a glass of bubbly as we’ve reached the number 18! The legal drinking age in most countries around the world, unless you’re the US, Saudi Arabia or Haiti. In fact, in Haiti you only need to be ‘of school age’ to get your hands on the devil’s nectar…

You can listen to all of the Funbers episodes from BBC Radio Cambridgeshire and BBC Radio Oxford here.