A special edition of Tom Rocks Maths on Oxide Radio with music inspired by Tom’s recent visit to Slam Dunk Festival. We’ve also got Pokemon and drinking games, a mind-bending Einstein Puzzle, and news of Tom’s antics running around the streets of Oxford in his underwear… This is maths, but not as you know it.

# YouTube Star ‘Rocks’ Math (Schwetzingen Newspaper)

“30kg of plastic has been found in a blue whale’s stomach: how much would that be if a person swallowed just as much proportional to their own bodyweight?” Tom Crawford from Oxford began his guest lecture at Hebel-Gymnasium with this question. The students calculated that you’d find six (empty) plastic shopping bags in a human stomach. The other results worked out over the course of the entertaining presentation were also very impressive.

Tom Crawford doesn’t just have rock music as a hobby, rather with his tattoos and piercings, he looks like a rockstar too – though his tattoos are all to do with maths: since for example, the decimal places of “e” (Euler’s number) wind around his arm, the number pi is also encoded in an infinite series. On his YouTube channel “Tom rocks maths”, he presents science in an entertaining way – sometimes even pieces of clothing fly off during stripteases: “I want to show that maths isn’t always just super serious but it can also be fun.”

The mathematics lecturer is currently part of the Heidelberg Laureate Forum in Heidelberg. This is where the best maths and computer scientists in the world are meeting up with junior researchers and journalists. Crawford came to Schwetzingen at the invitation of maths teacher Birgit Schillinger. He brought along some exciting questions. The common theme was Tom’s favourite number, pi, which is used in so many formulas. How many ping pong balls are needed to lift the sunken Titanic off the ground? Which factors are involved when a footballer bends a ball so that it flies in an arc past the wall into the goal? When calculating the trajectory, several physical variables play a role. But how? Crawford studied the mathematics behind it. His doctoral thesis was on fluid mechanics: What path does a river take when it flows into the sea? The findings help us to understand sea pollution and possibly help to stop it.

At the end, the Hebelians made Platonic solids, of which, amazingly, there are only five. Strange? No, Tom explains this number by the sum of the angles at the corners – all very logical! Finally a student’s question, which example in mathematics has impressed Tom the most: “It is terrific how the wave characteristic of light follows from Maxwell’s equations, which deal with electricity and magnetism, with only the help of mathematics. Maths is just awesome!”

*Birgit Schillinger*

Thanks to Cameron Bunney for the translation.

The original article in Schwetzingen can be found here.

# Struggling to engage your students with maths? Think outside the box…

*New guidance, released by Pearson, says: If we want to tackle maths anxiety in Britain, we have to change the negative perceptions and experiences that so many learners have when it comes to maths. In this blog, Dr Tom Crawford, maths tutor at the University of Oxford, shares his take on the out-of-the-box approaches to help engage young people with the subject, spark curiosity and inspire life-long interest in maths.*

**Maths is boring, serious and irrelevant to everyday life** – at least according to the results of my survey amongst friends, students and colleagues working in education. This isn’t necessarily something new, but it does highlight one of the current issues facing maths education: how do we improve its image amongst society in general?

With ‘Tom Rocks Maths’ my approach is simple: improve the image of maths by combatting each of the three issues identified above, and do it as creatively as possible…

*Tackling “Maths is boring”*

*Tackling “Maths is boring”*

The misconception that maths is a boring subject often develops from maths lessons at school. Due to the extensive curriculum, teachers do not have the time to explore topics in detail, and in many cases, resort to providing a list of equations or formulae that need to be memorised for an exam.

My attempted solution is to do the hard work for them by creating curiosity-driven videos that explain mathematical concepts in exciting and original ways. Take the example of Archimedes Principle – a concept that explains why some objects are able to float whilst others sink – a key part of the secondary school curriculum. It’s perhaps not the most engaging topic for teenagers with no interest in weight regulations for maritime vehicles. But, if instead the topic were presented as part of a video answering the question ‘how many ping-pong balls would it take to raise the Titanic from the ocean floor?’ then maybe we can grab their attention.

Generating curiosity-driven questions such as these is not always easy, but the core concept is to present the topic as part of the answer to an interesting question that your audience simply *has* to know the answer to.

When teaching my second-year undergraduate students about Stokes’ Law for the terminal velocity of an object falling through a fluid, we discuss the question ‘how long would it take for Usain Bolt to sink to the bottom of the ocean?’ – something I think almost everyone wants to know the answer to! (Don’t worry you can watch the video to find out).

*Tackling “Maths is irrelevant to everyday life”*

*Tackling “Maths is irrelevant to everyday life”*

Of all of the issues facing maths in society at the moment, this is perhaps the one that annoys me the most. The majority of people that I speak to who don’t like maths will tell me that it’s the ‘language of the universe’ and can be used to describe pretty much anything, but yet they almost always go on to say how they stopped trying to engage with it because it simply doesn’t apply to them. This is what we mathematicians call a contradiction.

To try to tackle this issue, I go out of my way to present as large a range of topics as possible from a mathematical viewpoint. This has seen me discuss the maths of dinosaurs, the maths of Pokémon and the maths of sport to name but a few. Throughout 2018, my weekly ‘Funbers’ series with BBC radio examined the ‘fun facts about numbers that you didn’t realise you’ve secretly always wanted to know’, where each week a new number would be discussed alongside an assortment of relevant facts from history, religion and popular culture. When working with the BBC, I was very insistent that the programmes were introduced as a ‘maths series’ to help listeners to make the connection between maths and everyday life.

*Tackling “Maths is too serious”*

*Tackling “Maths is too serious”*

At first this surprised me. I’d never personally thought of my subject as ‘serious’ and speaking to my friends and colleagues, they seemed equally perplexed. But then it hit me. Looking at maths and mathematicians from the outside, where you cannot understand the intricate details and beautiful patterns, calling the subject ‘serious’ is a very valid response. There are endless rules and regulations that must be followed for the work to make sense, and most people working in the field can come across as antisocial or introverted to an outsider, which is where I come in.

To try to show that maths isn’t as serious as many people believe, and just to have some plain old fun, I created my persona as the ‘Naked Mathematician’. This began with the ‘Equations Stripped’ video series on YouTube, where I strip-back some of the most important equations in maths layer by layer, whilst also removing an item of my clothing at each step until I remain in just my underwear. As well as providing an element of humour to the videos (as no mention is made of the increasing lack of clothing), the idea is that by doing maths in my underwear it shows that it does not have to be taken as seriously as many people believe.

I have also seen an added benefit of this approach in attracting a new audience that otherwise may not have had any interest in learning maths – from my perspective I really don’t care *why* people are engaging with the subject, so long as they have a good experience which they will now associate with mathematics.

Whilst I am aware that my approach to tackling the issues faced by mathematics in society may not be to everyone’s tastes, our current methods of trying to engage people with maths are not working, so isn’t it about time we tried thinking outside of the box?

The original article published by Pearson is available here.

# Numberphile: Navier-Stokes Equations

Incredibly excited to be featured on the legendary Numberphile explaining the million-dollar problem that is the Navier-Stokes Equations…

# Tom Rocks Maths: S02 E07

More great music and great maths from Tom Rocks Maths on Oxide Radio – Oxford University’s student radio station. Featuring special guest Yuxiao who explains the Monty Hall problem, tackles the infamous numbers quiz, and sets us not one, but THREE problems in a bumper edition of the weekly puzzle. Plus, music from ACDC, Gym Class Heroes and The Offspring. This is maths, but not as you know it…

Thanks to Alice Taylor for production assistance.

# Leo – 2nd year Oxford Maths student

Meet Leo – a second year Maths student at the University of Oxford who only discovered his love for the subject when at high school. In this short video for the St John’s College Inspire Programme, he explains his favourite parts of Maths and what he has enjoyed most when studying it at university.

# Koch Snowflake

A short sneak preview of the full-length ‘Mandelbulbs’ video currently in production. A Koch Snowflake is an example of a 2D fractal with infinite perimeter but finite area. Full details of the calculation in the final video… COMING SOON!