Leo – 2nd year Oxford Maths student

Meet Leo – a second year Maths student at the University of Oxford who only discovered his love for the subject when at high school. In this short video for the St John’s College Inspire Programme, he explains his favourite parts of Maths and what he has enjoyed most when studying it at university.

How do citrus fruits create such a strong smell?

Citrus fruits contain small pockets of liquid which burst upon contact releasing a jet of strong smelling oil into the air. The strong smell is designed to attract animals to the site to help to spread the seeds of the fruit as far as possible. Andrew Dickerson at the University of Central Florida has recorded the squirting motion using high speed cameras to try to understand the exact process of these ‘micro-jets’ of citrus oil.

 

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

Tom Rocks Maths: S02 E05

Tom Rocks Maths is back on Oxide Radio for Hilary Term 2019 with the usual eclectic mix of maths and music. Learn more about the only million-dollar Millennium Problem that’s been solved so far, fun facts about the number 6, and a nursery rhyme themed puzzle. Plus, music from Bring me the Horizon, Queen and Papa Roach. This is maths, but not as you know it…

Levitating Objects on an Air Table

Air-tables create a thin film of air capable of supporting objects and causing them to levitate. By adding grooves to the table or the object, Professor John Hinch at the University of Cambridge was able to control the objects motion and describe the resultant acceleration in terms of a simple scaling relationship involving gravity and the aspect ratio.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

How do Insects Walk on Water?

Using the surface tension of water and a hydrophobic coating on their legs, many insects are able to walk on water. The surface tension acts like an invisible blanket across the top of the water, while the hydrophobic coating on the insects legs means that they are repelled from water molecules, much like the repulsion of two magnets with the same pole. By studying the simple case of a hydrophobic sphere being dropped into water from different heights, Daniel Harris and his team at Harvard University were able to improve our understanding of the mechanism of water-walking and use it to help build water-walking robots.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference. Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

WordPress.com.

Up ↑