Teddy Rocks Maths Essay Competition

Entries for the first ‘Teddy Rocks Maths’ Essay Competition are now open! This is YOUR chance to write a short article about your favourite mathematical topic which could win you a prize of up to £100. ENTER HERE: https://seh.ac/teddyrocksmaths

All entries will be showcased on tomrocksmaths.com with the winners published on the St Edmund Hall website. St Edmund Hall (or Teddy Hall as it is affectionately known) is a college at the University of Oxford where Tom is based.

Entries should be between 1000-2000 words and must be submitted as Microsoft Word documents or PDF files using the form at https://seh.ac/teddyrocksmaths

The closing date is 12 March 2020 and the winners will be announced in April 2020.

Two prizes of £50 are available for the overall winner and for the best essay from a student under the age of 18. There are no eligibility requirements – all you need is a passion for Maths and a flair for writing to participate!

The winners will be selected by Dr Tom Crawford, Maths Tutor at St Edmund Hall and the creator of the ‘Tom Rocks Maths’ outreach programme. The mathematical topic of your entry can be anything you choose, but if you’re struggling to come up with ideas here are a few examples to get you started:

Where does river water go when it enters the ocean? – Numberphile

Would alien geometry break our brains? – Tom Rocks Maths intern and maths undergraduate Joe Double

How many ping-pong balls would it take to raise the Titanic from the ocean floor?

If you have any questions or would like more information please get in touch with Tom using the contact form here – Good luck!!

Visiting Students at St Edmund Hall

Calling all US-based students, if you have ever thought you would like to have me as your college professor, now is your chance. I am currently in charge of the visiting student mathematics programme at St Edmund Hall, which means anyone accepted onto the programme will have weekly tutorials with yours truly. Information on the course specifics and how to apply can be found on the St Edmund Hall website here.

Courses available include (but are not limited to):

Michaelmas Term (Autumn)

  • Linear Algebra
  • Geometry
  • Real Analysis: Sequences and Series
  • Probability
  • Introductory Calculus
  • Differential Equations
  • Metric Spaces and Complex Analysis
  • Quantum Theory

Hilary Term (Winter)

  • Linear Algebra
  • Groups and Group Actions (continues next term)
  • Real Analysis: Continuity and Differentiability
  • Dynamics
  • Fourier Series and PDEs
  • Multivariable Calculus
  • Differential Equations
  • Numerical Analysis
  • Statistics
  • Fluid and Waves
  • Integral Transforms

Trinity Term (Spring)

  • Constructive Mathematics
  • Groups and Group Actions (continued)
  • Real Analysis: Integration
  • Statistics and Data Analysis
  • Calculus of Variations
  • Special Relativity
  • Mathematical Biology

The detailed course synopses, as well as some course materials can be found here.

If you have any questions please get in touch with Tom via the contact form, or the admissions office at St Edmund Hall via admissions@seh.ox.ac.uk.

Photo: Flemming, Heidelberg Laureate Forum

La Redada Podcast Interview

I was recently interviewed by Lucia Taboada for La Redada Podcast about my love of maths and how it is used in today’s world to model everything from penalty kicks to the next TV series you watch on Netflix. The interview was translated into Spanish for the actual podcast so I’ve also included the original recording of my answers in English – enjoy!

Podcast version

La Redada T08 E29: Tom Crawford the Naked Mathematician


  1. On your YouTube channel, you present science in an entertaining way. Why is maths so unpopular sometimes, maybe students are afraid of maths?
  2. How would you define the importance of mathematics in our life?
  3. Tom, I’m a huge supporter of a Spanish team called Celta de Vigo. You explain the possibilities using maths to improve the performance of football players. How can Celta de Vigo use this to improve? (unfortunately, we are now in the last positions)
  4. Penalty kicks are a science? Can you predict them?
  5. Have you been hired by any football team?
  6. Do you think football teams should hire math workers?
  7. You are a tutor in St John’s College at the University of Oxford where you teach maths to the first and second year undergraduates. Oxford is a traditional university – how are your methods received there?
  8. You have some maths tattoos on your body, thats right? Explain them to us?

English (unedited) version

Image: Residencia de Estudiantes

How do Stinging Nettles Inject Poison?

The leaves of stinging nettles are covered in ‘pipette-like’ stingers which penetrate the skin on contact and deposit a small amount of poison. The ‘pipette-like’ design means that almost all of the poison contained in the stinger can be injected at once if sufficient force is applied to bend the stinger to an angle of 90 degrees. This is demonstrated in laboratory experiments conducted by Kaare Jensen at the Technical University of Denmark.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

Teaching Mathematics

Following my talk in Madrid in November, I was asked to answer a few questions about the current status of maths teaching based on my experience as a university lecturer. Here are my answers…

How should mathematics be taught in schools?

Through stories. Teaching through story-telling is an incredibly powerful tool and one that is not used enough in mathematics. For example, when teaching trigonometry, rather than just stating the formulae, why not explain WHY they were needed in the first place – by ancient architects trying to construct monuments, by explorers trying to estimate the height of a distant mountain – these are the reasons that mathematics was developed, and I think that teaching it through these stories will help to engage more students with the subject.

Are teachers prepared to teach this subject correctly?

I don’t believe the teachers are at fault – they are told to follow a particular curriculum and due to their heavy workload have no time to develop lessons with engagement at the heart of their design. There are of course ways that we can help teachers, by providing examples of ways to make maths content more interesting and engaging. This can be through story-telling or applications to topics of interest to students such as sport and video games. This is what I try to do with ‘Tom Rocks Maths’, for example see my video teaching Archimedes Principle by answering the question ‘how many ping-pong balls would it take to raise the Titanic from the ocean floor?’.

In your view, how should a math teacher be?

The most important thing is to have passion for the subject. The level of excitement and interest that the teacher demonstrates when presenting a subject will pass on to the students. Just as enthusiasm is infectious, so too is a lack of it. Beyond passion, there is no typical profile of a maths teacher. Anyone can be a mathematician, and it is very important that people don’t feel that they have to conform to a particular stereotype to teach the subject. I have always just been myself, and hopefully as a public figure in mathematics will inspire others to do the same.

Sometimes, this subject becomes more complicated for some students, not so much because of its difficulty, but because of the way in which they have been taught. What should be done with these students?

The trick is to find a way to explain a topic that resonates with a particular group of students. Let me give you an example from my research: the Navier-Stokes Equations (NSEs). For students who have no real interest in mathematics, I would try to get them to engage by explain the $1-million prize that can be won by solving these equations. For students who have more interest in real-world applications such as in Engineering or Biology, I would tell them about how the aerodynamics of a vehicle or the delivery of a drug in the bloodstream rely on an understanding of Fluid Mechanics and the NSEs. If the students are fans of sport, I can explain how the equations are used to explain the movement of a tennis ball through the air, or for testing the perfect formation in road cycling. Finally, for students who are already keen mathematicians, I would explain how the equations work in almost every situation, except for a few extreme cases where they result in ‘singularities’, which as a mathematician are the ones you are most interested in understanding. Once you know the interests of your audience, you can present a topic in a way that will help them to engage with the material.

Can you get to hate math?

It is certainly possible – though of course alien to mathematician such as myself! I think this feeling of ‘hate’ relates back to either the way that you have been taught the subject, or from a lack of understanding. If you did not enjoy your maths lessons at school and harbour ill feelings towards your teacher, then you will begin to develop negative feelings towards the subject. This is not because you dislike the subject, but more because of the way that it was taught to you. Likewise, if you do not understand mathematics then it is very easy to develop a ‘fear’ of the subject, which can quickly turn into hatred due to feelings of inadequacy or stupidity if not addressed. It all comes back to finding a way to approach the subject that fits with the knowledge and experiences that you already have. If you present a problem in an abstract manner of manipulating random numbers to find a given total, then most people will struggle – regardless of their mathematical ability. But the same problem presented in a relatable situation suddenly becomes understandable. Here’s an example:

(a). Using the following numbers make a total of 314: 1, 1, 2, 5, 10, 10, 20, 20, 50, 100, 100, 500.

(b). You go shopping and the total is €3.14. What coins would you use to pay for your items?

They are the same question, but in (a). the problem looks like a maths question, and in (b). it is an everyday situation that people all over the world are used to. Both require the same maths to solve, but even people who ‘hate’ maths could tell you the correct answer to (b). using their own real-life experience.

Women are at a great disadvantage compared to men when entering a STEM career, why do you think this is happening?

First of all, as a man I am certainly not qualified to answer this question, but I will at least try to provide you with my opinion based on personal experience. At high school level I believe that the difference is less severe (eg. see article here) and even at university there is a slightly higher number of females than males studying science-based subjects. BUT, the issue occurs after this. In graduate degree programmes and beyond there is a definite lack of female researchers, and this is amplified even further at more senior level positions. One explanation could be that academic ‘tenure-track’ positions exist for life, and so many of the men that now hold these positions have done so for the past 30-40 years and were employed when we were doing a much worse job of tackling the gender gap. Now that awareness of these issues has increased, and in general we are doing a much better job at addressing them that we were 30 years ago, hopefully we will begin to see more females in leading positions over the coming years, it will just take a little while for the effect to be seen. I also think that in general there are not enough female role models within many subjects (especially maths) that have reached the pinnacle of their field (through no fault of their own), and as such there is a lack of role models for young female researchers. The achievements of female mathematicians such as Maryam Mirzakhani (2014 Fields Medal) and Karen Uhlenbeck (2019 Abel Prize) should be even more celebrated precisely for this reason.

Do you think that enough importance is given to mathematics in the educational world?

In the past perhaps not, but attitudes are certainly changing. With the increased role that technology and algorithms play in our lives, people are beginning to realise that we need to better understand these processes to be able to make informed decisions – and maths is the key to doing this. Employers are certainly aware of the invaluable skillset possessed by a mathematician and as a result more and more students are choosing to study the subject at degree level and beyond to improve their competitiveness in the job market. Ultimately, attitudes are changing for the better, but there is still more that can be done.

In your opinion, what is the best way to teach this subject?

Exactly as I have described in questions 1 and 4. Storytelling is key to making the material as engaging as possible and knowing the interests of your audience allows you to present the subject in a way that will appeal to them most effectively.

What is the current situation of mathematics research in the university?

I think the main issue facing research mathematics is the relatively recent trend of short-term research outcomes. The majority of funding available to mathematicians requires either continuous publication of new results or outcomes that can readily be used in an applied setting.  The issue of continuous publication means that researchers feel the need to publish a new manuscript every few months, which leads to very small advances at each step, and a wealth of time spent writing and formatting an article instead of conducting actual research. In many cases, the work would be much clearer if published as one piece in its entirety after several years of careful work. The drive for short-term research outcomes means that it is now very difficult to study mathematics just for the sake of it – you have to be able to convince your funding body that your work has real-world applications that will be of benefit to society within the next 5-10 years. To show why this is a disaster for maths research, let’s take the example of Einstein and his work on relativity. Now seen as a one of the most fundamental theories of physics, his work had no practical applications until the invention of GPS 60 years later. In today’s short-term outcomes driven market, it is highly unlikely that Einstein’s work would have been funded.

Photo: Residencia de Estudiantes

Tracking Beetles using the Sound of their Wings

The Cocunut Rhinoceros Beetle is an invasive species that if left alone would decimate citrus crops across California. To prevent this from happening, John Allen and his team at the University of Hawai’i have been working to hunt the insects down before they are able to reach the West Coast of the USA. By identifying the frequency of the beetles wing beat, they are able to track them down by listening out for the unique flapping sound of their wings and alert pest control to their whereabouts.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

What is P versus NP?

TRM intern and University of Oxford student Kai Laddiman speaks to St John’s College Computer Scientist Stefan Kiefer about the infamous million-dollar millennium problem: P versus NP. 

You can read more about P vs NP here.

Numberphile: Pi Million Subscribers

It’s incredible to see a channel dedicated entirely to maths reach this quite frankly ridiculous number of subscribers – congratulations Numberphile!! If you haven’t seen it yet check out the many famous faces, including yours truly at 1:27…

Perfect Numbers and Mersenne Primes

Perfect numbers and Mersenne primes might seem like unrelated branches of math, but work by Euclid and Euler over 2000 years apart showed they are so deeply connected that a one-to-one correspondence exists between the two sets of numbers.

Produced by Tom Rocks Maths intern Kai Laddiman, with assistance from Tom Crawford. Thanks to St John’s College, Oxford for funding the placement.


Up ↑