Building bio-inspired vehicles to explore Mars

The air density on Mars is 1/100th of that on Earth which means that current airborne vehicles cannot be used to explore the planet. Jeremy Pohly, at the University of Alabama Huntsville, is designing new bio-inspired vehicles – based on bumblebees – which he hopes will be used in the near future for the human exploration of Mars.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

Simulating turbulence over canopies to improve air quality

By improving our understanding of turbulent flow over canopies we can design better cities to improve air quality – just one of the applications of the work of Alfredo Pinelli, a professor at City University of London working on Large Eddy Simulations (LES) of turbulence.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

Tom Rocks Maths: S02 E06

Another fun-filled hour of your favourite two things – maths and rock music – courtesy of Tom Rocks Maths on Oxide Radio. This week I’m joined by two of my students from Teddy Hall, Fran and Tom, who will be explaining their favourite mathematical topics, taking part in a bumper numbers quiz, and sharing some of their music tastes. Plus, the usual dose of Funbers, and excellent music from Panic at the Disco, Sum 41 and Muse.

With thanks to Alice Taylor for production assistance.

How do citrus fruits create such a strong smell?

Citrus fruits contain small pockets of liquid which burst upon contact releasing a jet of strong smelling oil into the air. The strong smell is designed to attract animals to the site to help to spread the seeds of the fruit as far as possible. Andrew Dickerson at the University of Central Florida has recorded the squirting motion using high speed cameras to try to understand the exact process of these ‘micro-jets’ of citrus oil.

 

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

Levitating Objects on an Air Table

Air-tables create a thin film of air capable of supporting objects and causing them to levitate. By adding grooves to the table or the object, Professor John Hinch at the University of Cambridge was able to control the objects motion and describe the resultant acceleration in terms of a simple scaling relationship involving gravity and the aspect ratio.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

How do Insects Walk on Water?

Using the surface tension of water and a hydrophobic coating on their legs, many insects are able to walk on water. The surface tension acts like an invisible blanket across the top of the water, while the hydrophobic coating on the insects legs means that they are repelled from water molecules, much like the repulsion of two magnets with the same pole. By studying the simple case of a hydrophobic sphere being dropped into water from different heights, Daniel Harris and his team at Harvard University were able to improve our understanding of the mechanism of water-walking and use it to help build water-walking robots.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference. Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

Brazil Nut Effect in Avalanches and Cereal

The brazil nut effect describes the movement of large particles to the top of a container after shaking. The same effect also occurs in avalanches where large blocks of ice and rocks are seen on the surface, and in a box of cereal where the large pieces migrate to the top and the smaller dusty particles remain at the bottom. In this video, Nathalie Vriend and Jonny Tsang from the University of Cambridge explain how the granular fingering instability causes granular convection and particle segregation, with examples of experiments and numerical simulations from their research.

 

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference. Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

From aliens to bees via tattoos…

A short review of intern Joe Double’s work with Tom Rocks Maths over the summer of 2018. Written for the OUS East Kent branch who provided funding for the project. 

‘First of all, I must thank you again for the grant, and for the warmth and friendliness at your event; it was an absolute delight to give my presentation and talk to your members, as it has been interacting with you in general.

I had the opportunity to work with one of my tutors over the summer to produce pieces for a general audience about complex mathematical topics. Without the help of the OUS East Kent group, I couldn’t have taken up this opportunity – with their grant’s help, I was able to afford to live in Oxford through a large part of the summer, allowing me to work in close contact with my tutor and use his studio for creating the videos and audio pieces I worked on. The OUSEK grant can be put to use far more flexibly than those from bigger schemes (which always have preconditions to meet about how the project will apply to industry, say), so I couldn’t recommend applying more if you have an idea for a project for your time at Oxford which is on the unusual side!’

Pieces I produced during the project:

Why do Bees Build Hexagons? Honeycomb Conjecture explained by Thomas Hales

A video I edited of Tom (my tutor) interviewing Thomas Hales about the mathematics behind beehives.

Would Alien (Non-Euclidean) Geometry Break Our Brains?

My main video, written, filmed and edited by me, about demystifying non-Euclidean geometry.

Take me to your chalkboard

My main audio piece, where I interview Professor Adrian Moore (also of St Hugh’s) about what philosophy can tell us about how aliens might do maths.

Maths proves that maths isn’t boring

An article about Gödel’s incompleteness theorems, and how they show maths is always risky.

Getting tattooed for science…

An audio piece I edited about a tattoo Tom got of the Platonic solids.

Alien maths – we’re counting on it

An article about how we use the mathematics of prime numbers to send messages to the stars.

Play Nice!

An article about a game theory paper which could amongst other things help stop deforestation.

The original article was published on the OUS East Kent website here.

WordPress.com.

Up ↑