Maths with a Striptease (Die Rheinpfalz)

Tom “rocks” maths on the internet – lecturer from Oxford arouses enthusiasm with crazy ideas… 

The graduate mathematician Tom Crawford not only has rock music as a hobby, but he also looks like a rock star with his tattoos and piercings. However, some of his tattoos are related to mathematics. For example, the first 100 decimal places of Euler’s number wind around his arm and the number pi has been encrypted as an infinite series. On his Youtube channel “Tom Rocks Maths” he presents science in a fun way – the clothes sometimes fly during a striptease: “I want to show that maths is not always only downright serious, but fun.”

The math lecturer from Oxford came as part of the Heidelberg Laureate Forum (HLF) in the Electoral Palatinate. Since there is no Nobel Prize in mathematics, the winners (Latin: laureates) of comparable awards are invited to the HLF. The best math and computer scientists in the world meet here for a week with junior scientists and journalists. Crawford was on the ground as a publicist and presenter, and took the opportunity to speak to some of the awardees. For example, Martin Hairer, who received the Fields Medal for his seminal studies, had an appointment for an interview. In the end, they played Tetris for an hour and talked about “cool math”: “Such a relaxed and profound conversation is only possible at the Heidelberg Laureate Forum,” the Brit enthuses about the inspiring atmosphere at the HLF.

IMG_9399

Tom Crawford was already “packed” in the elementary school of mathematics: “When we were learning multiplication, I did not want to stop working on difficult tasks until late in the evening – it did not feel like work at all.” Even later in high school, he always did math tasks first and gladly. “I was a good student in my eleven subjects, but math was the most fun.” The satisfying thing is, “in maths a result is right or wrong, there is no need to discuss it.”

After studying in Oxford, he went to Cambridge to write his PhD in fascinating  fluid dynamics. “We wanted to model how fluids move and interact with the world. I was excited about the prospect of being able to analyse experiments as a mathematician.” From this, models of reality were developed: what path does a river take when it flows into the sea? The findings help to understand the pollution of the oceans and possibly stop it. During his PhD he worked for the BBC in the science programme “The Naked Scientists”: this meant that the scientists liberated their theories from the complicated “clothes” and reduced them to a comprehensible basis. In this way, a layman will discover “naked” facts – in the sense of comprehensible ones. The radio broadcasts were a great success.”But you also have to visualize maths,” so he started to make his own videos and took the concept of the “naked mathematician” literally. In some lectures, he reveals the equations “layer by layer” and in each stage falls a garment – until Tom remains only in his boxer shorts. And then his tattoos are also visible, on whose mathematical background he will give a lecture in Oxford soon – with many guests guaranteed!

With unusual ideas, the only 29-year-old mathematician arouses the desire and curiosity for his subject. His original internet activities have now been honoured with an innovation prize. Even when attending school in Schwetzingen Tom Crawford had unusual questions: “In the stomach of a blue whale 30 kilos of plastic have been found: How much would that be if a person swallows just as much in relation to their own body weight?” The students calculated that in the human stomach, six (empty) plastic shopping bags would be located. Or, “How many table tennis balls are needed to lift the sunken Titanic off the ground?” And which example impressed him most in mathematics? “It is terrific how Maxwell’s equations, which deal first with electricity and magnetism, follow the wave property of light with the help of mathematics alone. Math is just fantastic! ”

Birgit Schillinger

The original article published in the Die Rheinpfalz newspaper (in German) is available here.

Eureka Magazine

The first 3 articles from my Millennium Problems series have been published in Cambridge University’s Eureka Magazine – one of the oldest recreational mathematics magazines in the world, with authors including: Nobel Laureate Paul Dirac, Fields Medallist Timothy Gowers, as well as Martin Gardner, Stephen Hawking, Paul Erdös, John Conway, Roger Penrose and Ian Stewart. To say I’m excited would be an understatement… (pages 82-84 in case you’re interested).

Eureka_65

Screenshot 2019-07-25 at 22.20.57

Levitating Objects on an Air Table

Air-tables create a thin film of air capable of supporting objects and causing them to levitate. By adding grooves to the table or the object, Professor John Hinch at the University of Cambridge was able to control the objects motion and describe the resultant acceleration in terms of a simple scaling relationship involving gravity and the aspect ratio.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

My PhD Thesis

My PhD thesis on modelling the spread of river water in the ocean in its entirety – not for the faint hearted! Unless you are a researcher in fluid mechanics, I strongly recommend reading the summary articles here before tackling the beast below. If you have any questions/comments please do get in touch via the contact form.

CrawfordTJ-Thesis

Screenshot 2019-06-18 at 17.41.40

How do Bubbles Freeze?

Freezing bubbles are not only beautiful, but also demonstrate incredibly complex physics. Here, Professor Jonathan Boreyko explains how bubbles freeze with examples of slow motion videos filmed in his laboratory at Virginia Tech.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

Brazil Nut Effect in Avalanches and Cereal

The brazil nut effect describes the movement of large particles to the top of a container after shaking. The same effect also occurs in avalanches where large blocks of ice and rocks are seen on the surface, and in a box of cereal where the large pieces migrate to the top and the smaller dusty particles remain at the bottom. In this video, Nathalie Vriend and Jonny Tsang from the University of Cambridge explain how the granular fingering instability causes granular convection and particle segregation, with examples of experiments and numerical simulations from their research.

 

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference. Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

Maths and the Media

Arriving at St John’s in 2008 to begin my study of mathematics, I was certain that within 4 years I would be working in the city as an actuary or an investment banker. Whilst I loved my subject, I saw it as means to obtain a good degree that would set me up for a career in finance. I’m not sure I could have been more wrong…

thesis.jpg

My current journey began towards the end of my second year, where I found myself enjoying the course so much that I wanted to continue to do so for as long as possible. This led me to research PhD programmes in the UK and the US, and I was fortunate enough to be offered a place to study Applied Maths at the University of Cambridge in 2012. During my time at Oxford, I found myself straying further and further into the territory of applied maths, culminating in a fourth-year course in fluid mechanics – the study of how fluids such as water, air and ice move around. This ultimately led to my PhD topic at Cambridge: where does river water go when it enters the ocean? (If you’re interested to find out more I’ve written a series of articles here explaining my thesis in simple terms.)

As part of my PhD I conducted experiments, worked on equations and even took part in a research cruise to the Southern Ocean. It was on my return from 6 weeks at sea that I had my first taste of the media industry via a 2-month internship with the Naked Scientists. I would spend each day searching out the most interesting breaking science research, before arranging an interview with the author for BBC radio. It was great fun and I learnt so much in so many different fields that I was instantly hooked. Upon completion of my PhD I went to work with the Naked Scientists full time creating a series of maths videos looking at everything from beehives and surfing, to artwork and criminals. You can watch a short trailer for the Naked Maths series below.

My work with the BBC and the media in general ultimately led me to my current position as a Mathematics Tutor at three Oxford colleges: St John’s, St Hugh’s and St Edmund Hall. This may not sound like the media industry, but the flexibility of the position has allowed me to work on several projects, including launching my website and my YouTube channel @tomrocksmaths where I am currently running two ongoing series. In the first, Equations Stripped, I strip back the most important equations in maths layer-by-layer; and for the second series in partnership with the website I Love Mathematics, I answer the questions sent in and voted for by students and maths-enthusiasts across the world.

Alongside my online videos, I am also writing a book discussing the maths of Pokémon – Pokémaths – and have a weekly show with BBC radio called ‘Funbers’ where I tell you the fun facts about numbers that you didn’t realise you’ve secretly always wanted to know. I have also recently presented at conferences in the US and India and hold regular talks at schools and universities, including for the Oxford Invariants and the Maths in Action series at Warwick University where I faced my biggest audience yet of 1200.

IMG_1526

Looking back at my time at St John’s, I never would have imagined a career in the media industry lay before me, but the skills, experience and relationships that I formed there have undoubtedly helped to guide me along this path. I think it just goes to show that Maths is possibly the most universal of all subjects and really can lead to a career in any industry.

You can follow Tom on Twitter, Facebook and Instagram @tomrocksmaths for the latest updates.

What is the blast radius of an atomic bomb?

Picture the scene: you’re a scientist working for the US military in the early 1940’s and you’ve just been tasked with calculating the blast radius of this incredibly powerful new weapon called an ‘atomic bomb’. Apparently, the plan is to use it to attack the enemies of the United States, but you want to make sure that when it goes off any friendly soldiers are a safe distance away. How do you work out the size of the fireball?

One solution might be to do a series of experiments. Set off several bombs of different sizes, weights, strengths and measure the size of the blast to see how each property affects the distance the fireball travels. This is exactly what the US military did (see images below for examples of the data collected).

Picture1 Picture2

These experiments led the scientists to conclude that were three major variables that have an effect on the radius of the explosion. Number 1 – time. The longer the time after the explosion, the further the fireball will have travelled. Number 2 – energy. Perhaps as expected, increasing the energy of the explosion leads to an increased fireball radius. The third and final variable was a little less obvious – air density. For a higher air density the resultant fireball is smaller. If you think of density as how ‘thick’ the air feels, then a higher air density will slow down the fireball faster and therefore cause it to stop at a shorter distance.

Now, the exact relationship between these three variables, time t, energy E, density p, and the radius r of the fireball, was a closely guarded military secret. To be able to accurately predict how a 5% increase in the energy of a bomb will affect the radius of the explosion you need a lot of data. Which ultimately means carrying out a lot of experiments. That is, unless you happen to be a British mathematician named G. I. Taylor…

Taylor worked in the field of fluid mechanics – the study of the motion of liquids, gases and some solids such as ice, which behave like a fluid. On hearing of the destructive and dangerous experiments being conducted in the US, Taylor set out to solve the problem instead using maths. His ingenious approach was to use the method of scaling analysis. For the three variables identified as having an important effect on the blast radius, we have the following units:

Time = [T],       Energy = [M L2 T-2],      Density = [M L-3],

where T represents time in seconds, M represents mass in kilograms and L represents distance in metres. The quantity that we want to work out – the radius of the explosion – also has units of length L in metres. Taylor’s idea was to simply multiply the units of the three variables together in such a way that he obtained an answer with units of length L. Since there is only one way to do this using the three given variables, the answer must tell you exactly how the fireball radius depends on these parameters! It may sound like magic, but let’s give it a go and see how we get on.

To eliminate M, we must divide energy by density (this is the only way to do this):

eqn1.png

Now to eliminate T we must multiply by time squared (again this is the only option without changing the two variables we have already used):

eqn2.png

And finally, taking the whole equation to the power of 1/5 we get an answer with units equal to length L:

eqn3

This gives the final result that can be used to calculate the radius r of the fireball created by an exploding atomic bomb:

eqn4

And that’s it! At the time this equation was deemed top secret by the US military and the fact that Taylor was able to work it out by simply considering the units caused great embarrassment for our friends across the pond.

I love this story because it demonstrates the immense power of the technique of scaling analysis in mathematical modelling and in science in general. Units can often be seen as an afterthought or as a secondary part of a problem but as we’ve seen here they actually contain a lot of very important information that can be used to deduce the solution to an equation without the need to conduct any experiments or perform any in-depth calculations. This is a particularly important skill in higher level study of maths and science at university, as for many problems the equations will be too difficult for you to solve explicitly and you have to rely on techniques such as this to be able to gain some insight into the solution.

If you’re yet to be convinced just how amazing scaling analysis is, check out an article here explaining the use of scaling analysis in my PhD thesis on river outflows into the ocean.

And if that doesn’t do it, then I wish you the best of luck with those atomic bomb experiments…

WordPress.com.

Up ↑