The third video in the fluid dynamics trilogy I made for Numberphile. Rivers contain 80% of pollution which ends up in the ocean, so understanding where the water goes when it leaves the river mouth is of upmost importance in the fight to clean-up our planet.

One of the clean-up methods used following an oil spill is to burn the fuel on the surface of the ocean. This generally works well, except in polar regions where the heat from the fire rapidly accelerates the melting of ice. Hamed Farahani at Worcester Polytechnic Institute is studying this phenomenon using laboratory experiments with the goal of improving the efficiency of combustion as a control for ocean pollution.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

Hannah Fry (UCL) explains how police detectives use maths to help them catch a serial killer.

The second video featuring Hannah discussing the Maths of Data, first part here.

Find out how this method can be used to pinpoint the probable home of ‘Jack the Ripper’ courtesy of Tom Rocks Maths intern and Oxford University student Francesca Lovell-Read here.

Episode 10 of Tom Rocks Maths on Oxide Radio sees the conclusion of the million-dollar Millennium Problem series with the Hodge Conjecture, a mischievously difficult number puzzle, and the answer to the question on everyone’s lips: how many people have died watching the video of Justin Bieber’s Despacito? Plus, the usual great music from the Prodigy, the Hives and Weezer.

Tom Rocks Maths launches into Hilary Term on Oxide Radio – Oxford University’s student radio station – with the continuation of the million-dollar Millennium Problems series, an explanation of how Tom’s PhD research can be used to help clean-up our oceans, and conspiracy theories aplenty with Funbers 11. Plus, music from Kings of Leon, Biffy Clyro and new Found Glory. This is maths, but not as you know it…

Dr Tom Crawford joined the Hall in October 2018 as a Stipendiary Lecturer in Mathematics, but he is far from your usual mathematician…

Tom’s research investigates where river water goes when it enters the ocean. A simple question, you might first think, but the complexity of the interaction between the lighter freshwater and the heavier saltwater, mixed together by the tides and wind, and pushed ‘right’ along the coast due to the Earth’s rotation, is anything but. The motivation for understanding this process comes from recent attempts to clean-up our oceans. Rivers are the main source of pollution in the ocean, and therefore by understanding where freshwater ends up in the ocean, we can identify the area’s most susceptible to pollution and mitigate for its effects accordingly.

To better understand this process, Tom conducts experiments in the lab and has conducted fieldwork expeditions to places as far-flung as Antarctica. What the southern-most continent lacks in rivers, it makes up for in meltwater from its plethora of ice sheets. The ultimate process is the same – lighter freshwater being discharged into a heavier saltwater ocean – and as the most remote location on Earth the influence of humans is at its least.

If you thought that a mathematician performing experiments and taking part in fieldwork expeditions was unusual, then you haven’t seen anything yet. Tom is also very active in outreach and public engagement as the author of the award-winning website tomrocksmaths.com which looks to entertain, excite and educate about all thing’s maths. The key approach to Tom’s work is to make entertaining content that people want to engage with, without necessarily having an active interest in maths. Questions such as ‘how many ping-pong balls would it take to raise the Titanic from the ocean floor?’ and ‘what is the blast radius of an atomic bomb?’ peak your attention and curiosity meaning you have no choice but to click to find out the answer!

Tom is also the creator of the ‘Funbers’ series which was broadcast on BBC Radio throughout 2018 telling you the ‘fun facts you didn’t realise you’ve secretly always wanted to know’ about a different number every week. From the beauty of the ‘Golden Ratio’ to the world’s unluckiest number (is it really 13?) via the murderous tale of ‘Pythagoras’ Constant’, Funbers is a source of endless entertainment for all ages and mathematical abilities alike.

And now for the big finale. If you are familiar with Tom’s work, you may know where we are heading with this, but if not, strap yourself in for the big reveal. Dr Tom Crawford is the man behind the ‘Naked Mathematician’ (yes you did read that correctly). To try to show that maths isn’t as serious as many people believe, to try to engage a new audience with the subject, and just to have fun, Tom regularly gives maths talks in his underwear! His ‘Equations Stripped’ series on YouTube has reached 250,000 views – that’s a quarter of a million people that have engaged with maths that may otherwise have never done so. His recent tour of UK universities saw several thousand students come to a maths lecture of their own accord to learn about fluid dynamics. It may not be to everyone’s tastes, but our current methods of trying to engage people with maths are failing, so why not try something new? This is maths, but not as you know it.

2018 Fields Medal winner Alessio Figalli explains his groundbreaking work on Optimal Transport for which he was awarded the prize, covering applications in weather prediction, crystal formation and soap bubbles.

Another fantastic guest joins me in the latest episode of Tom Rocks Maths on Oxide Radio as my student Bonnor explains the Bridges of Koenigsberg and their link to Topology and Graph Theory. Plus, news from the Royal Society, a prime puzzle, and a numbers quiz featuring everything from the Simpsons and owls, to counting to one billion using only 10% of our brains. All interspersed with amazing music from Paramore, Linkin Park and Bring me the Horizon. This is maths, but not as you know it…

Pollen is the main source of protein in a honey bees diet and so it’s essential that they are able to carry enough of it safely back to the hive. Marguerite Matherne at the Georgia Institute of Technology studies how they use nectar to create a viscous suspension that sticks the pollen to their hind legs and ensures that it doesn’t fall off during flight.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.