Perfect Numbers and Mersenne Primes

Perfect numbers and Mersenne primes might seem like unrelated branches of math, but work by Euclid and Euler over 2000 years apart showed they are so deeply connected that a one-to-one correspondence exists between the two sets of numbers.

Produced by Tom Rocks Maths intern Kai Laddiman, with assistance from Tom Crawford. Thanks to St John’s College, Oxford for funding the placement.

Numberphile: Where Does River Water Go?

The third video in the fluid dynamics trilogy I made for Numberphile. Rivers contain 80% of pollution which ends up in the ocean, so understanding where the water goes when it leaves the river mouth is of upmost importance in the fight to clean-up our planet.

Watch part 1 on the Navier-Stokes Equations here

Watch part 2 on Reynolds Number here.

Funbers Christmas Special

A very fun Christmas treat for you all as I team up with my good friend Bobby Seagull for the Funbers Xmas Special – expect fun facts, lots of numbers, and more birds than anyone thought possible… Happy Holidays!!

12 Days of Christmas Puzzles

Looking for some festive fun over the holiday season? Why not try your hand at my 12 Christmas puzzles…

Answers to all puzzles at the bottom of the page. 


 

Puzzle 1: If I set a puzzle every day of the advent period (1-25 December) and spend 1 minute on the first puzzle, 2 minutes on the second, 3 minutes on the third, and so on, with the final one being 25 minutes on the 25th puzzle, what is the total amount of time I will spend writing puzzles?

 


 

Puzzle 2: December 6th marked my birthday and to celebrate I travelled to Kiev with 4 friends. If I order a drink on the flight out and then each of my friends orders twice as many as the person before, how many drinks do we order in total?

 


 

Puzzle 3: This morning I built a snowman using three spheres of radius 0.5m, 0.4m and 0.2m. However, the sun has since come out and the snowman is starting to melt at a rate of 0.01 m3 per minute. How long will it take for him to disappear completely?

 


 

Puzzle 4: Suppose a newly-born pair of elves, one male, one female, are living together at the North pole. Elves are able to mate at the age of one month so that at the end of its second month a female elf can produce another pair of offspring. Suppose that the elves never die, and that the female always produces one new pair (one male, one female) every month from the start of the third month on. After one year, how many pairs of elves will there be?

 


 

Puzzle 5: On Christmas day I have 11 people coming to dinner and so I’m working on the seating plan ahead of time. For a round table with exactly 12 chairs, how many different seating plans are possible?

 


 

Puzzle 6: My front yard is covered in snow and I need to clear a path connecting my front door to the pavement and then back to the garage. If each square in the diagram is 1m x 1m what is the shortest possible path?

frontyard


 

Puzzle 7: The first night of Chanukah is December 22nd when the first candle is lit. If it burns at a rate of 0.05cm per hour, how tall does the candle need to be to last the required 8 days?

 


 

Puzzle 8: If you have a square chimney which is 0.7m across, assuming Santa has a round belly what is the maximum waist size that can fit down the chimney?

 


 

Puzzle 9: On Christmas Eve Santa needs to visit each country around the world in 24 hours. Assuming time stands still whilst he is travelling, how long can he spend in each country?

 


 

Puzzle 10: I got carried away with buying presents this year and now have more than can fit into my stocking. If the stocking has a maximum capacity of 150, and my presents have the following sizes: 16, 27, 37, 65, 52, 42, 95, 59; what is the closest I can get to filling the stocking completely?

(NB: I am not looking for the highest number of presents that will fit, but the largest total that is less than or equal to 150).

 


 

Puzzle 11: Santa has 8 reindeer, and each one can pull a weight of 80kg. If Santa weights 90kg, his sleigh 180kg, and each present weighs at least 3kg, what is the maximum number of presents that can be carried in a single trip?

 


 

Puzzle 12: To mark the end of the 12 days of Christmas each student at the University of Oxford has kindly decided to donate some money to a charity of their choice. If the first person donates £12 and everyone after donates exactly half the amount of the person before them (rounding down to the nearest penny), how much will be donated in total?

 


 

Answers

 

Puzzle 1: 1 + 2 + 3 + … + 25 = 325. There is a faster way to do this which was first discovered by the mathematician Gauss when he was still at school. If you pair each of the numbers in your sum, eg. 0 + 25, 1 + 24, 2 + 23, etc. up to 12 + 13, then you have 13 pairs which each total 25 and so the overall total is 25*13 = 325. The same method works when adding up the first n numbers, with the total always being n(n+1)/2.

 


 

Puzzle 2: 1+2+4+8+16 = 31.

 


 

Puzzle 3: Volume of a sphere = (4/3)*pi*radius3 and so the total volume of snow = 0.52 + 0.27 + 0.03 = 0.82 m3. Melting at a rate of 0.01 m3 per minute means the snowman will be gone after only 82 minutes!

 


 

Puzzle 4: This problem is actually a very famous sequence in disguise…

The first new pair is born at the start of the third month giving 2 pairs after three months. The question tells us that we have to wait one whole month before the new offspring can mate and so only the original pair can give birth during the fourth month which leaves a total of 3 pairs after four months. For the fifth month, both the original pair, and the first-born pair can now produce offspring and so we get two more pairs giving a total of 5 after five months. In month six, the second-born pair can now also produce offspring and so in total we have three offspring-producing pairs, giving 8 pairs after 6 months.

At this point, you may have spotted that the numbers follow the Fibonacci sequence, which is created by adding the previous two numbers together to get the next one along. The first twelve numbers in the sequence are below, which gives an answer of 144 – no wonder Santa is able to make so many toys!

Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

 


 

Puzzle 5: I have 12 choices of where to place the first person, 11 for the second, 10 for the third and so on, which gives 12*11*10*9*8*7*6*5*4*3*2*1 = 12! (read as 12 factorial) in total. BUT for any given seating plan we can rotate around the table one place to get the same order, which means we have in fact over counted by a factor of 12. Therefore, the total number is 11! = 39,916,800.

 


 

Puzzle 6: Reflect the yard in the pavement and draw a straight line connecting the front door to the edge of the garage closest to the front door (blue). Then add the same line from the ‘reflected’ front door at the top back down to the garage at the bottom (orange). The final shortest path is found by combining both paths for a valid one in the original diagram.

Screenshot 2020-01-14 at 13.04.44

The length is found using Pythagoras’ Theorem. From the door to the pavement we have length

(12 + 22)1/2 = (5)1/2

and from the pavement to the garage the length is

((1.5)2 + 32)1/2 = (11.25)1/2

giving a total length of 2.23 + 3.35 = 5.58m.

 


 

Puzzle 7: 8 days = 8*24 hours = 192 hours. 192*0.05 = 9.6cm.

 


 

Puzzle 8: Chimney diameter = 0.7m so the maximum circumference (or waist size) that will fit is 0.7*pi = 2.2m or 88 inches!

 


 

Puzzle 9: Using the UN list of 193 countries, Santa has 24 * 60 = 1440 minutes total, which means spending only 7.5 minutes in each country!

 


 

Puzzle 10: 150 exactly with 16 + 27 + 42 + 65 = 150.

 


 

Puzzle 11: We have 8 reindeer each with a capacity of 80kg giving a total of 640kg that can be carried. Subtracting the 90kg for Santa and 180kg for the sleigh leaves 370kg available. Dividing this by 3 gives 123.33 so a maximum of 123 presents can be carried at once.

 


 

Puzzle 12: 12 + 6 + 3 + 1.5 + 0.75 + 0.37 + 0.18 + 0.09 + 0.04 + 0.02 + 0.01 + 0 + 0 + 0 + …

The donations stop after the 11th person giving a total of £23.87. Even if we had allowed donations of part of a penny the total would never quite reach £24.00. This is an example of an infinite sum (or Geometric Series) where the total is always two times the first number.

How does Sea Ice affect Climate Change?

There is no doubt that sea ice in the polar regions is melting, but what is the exact role that this plays in the global climate system? To understand climate change we need to understand mixing in the ocean, which is exactly what Andrew Wells at the University of Oxford comes is trying to do by studying a model for sea ice growth in the Arctic.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

Fire and Ice: Burning Oil in the Polar Regions

One of the clean-up methods used following an oil spill is to burn the fuel on the surface of the ocean. This generally works well, except in polar regions where the heat from the fire rapidly accelerates the melting of ice. Hamed Farahani at Worcester Polytechnic Institute is studying this phenomenon using laboratory experiments with the goal of improving the efficiency of combustion as a control for ocean pollution.

This video is part of a collaboration between FYFD and the Journal of Fluid Mechanics featuring a series of interviews with researchers from the APS DFD 2017 conference.

Sponsored by FYFD, the Journal of Fluid Mechanics, and the UK Fluids Network. Produced by Tom Crawford and Nicole Sharp with assistance from A.J. Fillo.

Tom Rocks Maths S2 E12

Season 2 comes to a close with stories from my (rather eventful) trip to China, a new video series with BBC Maths Guru Bobby Seagull, and the number of calories needed by a Charizard per day to survive. That’s all on top of the usual puzzle and fun facts about the numbers 0 and 1. Plus, music from the Red Hot Chili Peppers, System of a Down, and Limp Bizkit. This is maths, but not as you know it…

Tracklist:

  • 00:00 Opening
  • 00:13 Bowling for Soup – Normal Chicks
  • 03:25 Limp Bizkit – My Generation
  • 07:05 Red Hot Chili Peppers – The Adventures of Rain Dance Maggie
  • 11:44 News
  • 18:00 Enter Shikari – Arguing with Thermometers
  • 21:22 Puzzle
  • 24:09 System of a Down – Shimmy
  • 25:59 Atreyu – You Gave Love a Bad Name
  • 29:22 Pokemaths: How many calories does a Charizard need per day?
  • 38:13 Midtown – Get it Together
  • 41:30 Billy Talent – Nothing to Lose
  • 45:02 Funbers 0 and 1
  • 51:36 The Story So Far – Right Here
  • 54:02 Puzzle Solution and Close

El Pais: The Oxford teacher who stays in briefs to teach mathematics

Tom Crawford talks about how mathematics can help win a football league or the real ability of algorithms to manipulate people’s behaviour.

Tom Crawford (Warrington, United Kingdom, 1989) is presented as an atypical math teacher. He teaches mathematics to first and second year students at the University of Oxford (United Kingdom) and carries out an intense dissemination work in which he tries to approach a discipline that is not usually found among the favourites of young students.

In his attempt to popularise science, he does not hesitate to stay in his underpants , using the striptease as a metaphor for his work deepening the meaning of equations such as Navier-Stokes, unveiling them layer by layer, to make something affordable that can result in principle esoteric.

This week, Crawford visited the Student Residence, in Madrid, where, within the Mathematics in Residence cycle organised by the ICMAT, he offered the conference  Mathematics of sport . In it, he uses sport as an example of a daily activity that can be better understood and practiced using mathematical equations.

Question. You undress or use sports to make mathematics impose less. Why is it necessary to show that mathematics is fun? I don’t see lawyers or judges, who also deal with very complex issues, trying to present the law as something fun.

Answer. I think it’s because people, for whatever reason, happily admit that they don’t like math, it’s socially acceptable. If you tell someone that you are a lawyer, their default answer is not going to be “I don’t like the law,” and that does happen with math. And it shouldn’t be like that. Everyone should have a basic understanding of math, but many people don’t have it. For me, that is why I want to emphasize that mathematics is fun and accessible. It doesn’t have to be something very hard or something that was taught badly in school.

Naked-Mathematician_Tom-Crawford.jpeg

Q. Do you think mathematics is taught especially badly in school, worse than other subjects?

A. Mathematics has a hard time competing with other subjects in the sense of teaching them through stories. When you learn something, if they can teach you through stories, it is something very powerful, which serves to catch people. And that is easier with literature or history.

A very simple example of how to add stories to mathematics would be trigonometry. The properties of the triangles you learn in high school. If you think about how these functions were discovered or invented, why we invented the sine, the cosine and the tangent, it was the ancient architects who tried to build buildings, churches, pyramids and created those intellectual tools. This is how trigonometry should be taught to me. Imagine they are in ancient Rome and you have to build a concrete building. How would you do it with the technologies available at that time? This prompts you to think about angles and distances and that is where trigonometry is useful and what it was invented for.

Q. A little more than a century ago, in a country like Spain, more than half of the population was illiterate. Do you think it would be possible and desirable to get a large majority of people to be able to handle basic mathematical tools?

A. It is completely possible and I would say that we are already doing it. It depends on what you consider a basic level of mathematics. Most people can, for example, looking at a clock know that the needles return to the same place every 12 hours, it is modular arithmetic, something you don’t study until you get to college. Even being able to calculate changes when they give you a ticket is to do mental arithmetic. Or calculate when you have to leave home if it takes 35 minutes to the station and the train leaves at 12.45. There are many things you do without thinking, but that involve mathematical calculations. So it depends on what you consider a desirable level of mathematics, but a large part of the population already has some capacity to use them.

“You can question whether trying to influence voters is good or bad”

Q. He also talks about the possibilities of mathematics to improve the performance of athletes. There is a movie like Money Ball , which talks about the experience of a baseball coach who uses mathematical analysis to lead a small team to compete against the big ones in the league with much less budget. Do you use math a lot in elite sport?

A. As far as I know, it is an important part of the scout systems of large teams. Today, these scouts, in addition to the classic analysis of a player’s performance, strengths and weaknesses, include teams of mathematicians and data scientists. As in Moneyball , your job is to analyse large amounts of data and detect marginal gains to take advantage of. That works well in baseball, because you have many controllable factors: The pitching of the pitcher, the batter, the race to the base. It is very formulable and they are repetitive behaviours. In football it is more difficult to find those marginal gains because it is less controllable.

The best example I can think of in football is Leicester City, which won the Premiere League in 2016. A big surprise. They had climbed to the first few years before and suddenly they win. In that victory, N’Golo Kanté was very important. He was the star of the season and won the player of the year award. He had been signed by a French second division team because the scout network had identified him among all the defensive midfielders in Europe at any level. As a defensive camper centre, one of your jobs is to stop the attacks of opponents. You can measure this in tickets, but one of the best ways to do this is through interceptions, which has to do with the player’s ability to read a game. It is something very difficult to assess with a number, quite subjective. But interceptions suggest that you are very often in the right place. And from that point of view, their number of interceptions was much higher statistically than the rest of midfielders. If the average of all midfielders in Europe is two, but most of the players are between 1.9 and 2.1 and Kanté is at 3, we see that it is an atypical case. It was not just a statistical analysis, because the human element is valued, but it was a factor to hire him.

elpais
The mathematician Tom Crawford at the Student Residence, in Madrid. ÁLVARO GARCÍA

Q. Can mathematics tell us what is the limit of human performance in sport? There have already been examples in the past, such as Roger Bannister’s, which went down four minutes on the mile when almost everyone said it was impossible, in which the predictions were completely wrong. Can these limits be accurately identified using mathematics?

R.If you look at the men’s marathon record during the last century, the marks descend, but not at a constant pace. You can estimate, for example, that every 10 years, 10 minutes are trimmed at the beginning, but then, in the 1940s and 1950s, the curve begins to flatten out and already in the 1990s it seems completely flat. So if we had sat here 30 years ago, when the record was around two hours and five minutes, we could have thought we would never run below two hours, because even if it keeps going down, the pace is getting slower. But in recent years, there has been much progress in long-distance races, such as new shoes that can provide 4% more energy. In addition, there is a professionalisation that allows you to train all day and not have a job besides running.

“I could predict with some confidence that the human limit for the marathon would be about an hour and 55 minutes”

So these are new factors that modify our calculations. In the future, in 30 years, new improvements may appear, but it is certain that we will not run a marathon in less than an hour. Given what has happened in the past, I think I could predict with some confidence that the human limit for the marathon would be about an hour and 55 minutes.

Q. Some people, when talking about the possibilities of mathematics to bring humans to the limit of perfection, may think that sports will become more boring, because there will be less and less space for the unexpected.

A. I think that also has to do with the human psychological trait that is nostalgia. But sport evolves and there is always a human factor. If the study allows you to perfect the place where it is better to throw a penalty, the goalkeepers can also work with that information. And then, there are some players who do not shoot at that supposedly perfect space, such as Eden Hazard, of Real Madrid, who when he threw the penalties for Chelsea waited until the last moment to decide where he threw it, a method that goes against what he says The mathematical model. In the end there are many variables in sports.

Q. Can mathematics help us better understand human groups? Does that technology have the potential to improve living together or to make it worse?

A. With all the data available, there are huge technology companies that can make profiles of people. Knowing that you are white, American, that you earn so much money and live in such a state, they can try to predict what you like or what you do and influence your vote in one direction. But this technology could also be used for good and you can also question whether trying to influence voters is good or bad. I think that ultimately we depend on the big companies that have control over these data so that they assume their moral responsibility and use the data well.

In any case, I think that most of the mathematicians working in this field would say that the idea of ​​using mathematical data, algorithms and models to try to predict people’s behaviour is incredibly new and we don’t know exactly what we are doing. Algorithms may be a part of the decision making process, but not the only criteria for making a decision.

You can read the original article on El Pais here.

El Mundo Interview

During my recent trip to Madrid to speak at the Residencia de Estudiantes, I was interviewed by national newspaper ‘El Mundo’ about my talk on the ‘Maths of Sport’ and my mission to popularise maths. The original interview can be found here.

Known as Tom Rocks Maths, the Oxford University scientist transforms boring formulas into fascinating models that he applies to sport to improve records and reduce errors.

MAR DE MIGUEL | Madrid

Football World Cup, 2018. 1-1 on the scoreboard. Spain plays its pass to the quarterfinals in the penalty round against Russia. Koke has failed one. Cheryshev is ready to throw. He scores. It’s up to Aspas. Expectation. Whistle. Launch and … Akinfeev stops it. We miss the game.

Could it have been avoided? The answer is Tom Crawford, l’ enfant terrible of numbers, a punkrocker in the court of mathematicians at the University of Oxford. And he explains it with a worn shirt, leather jacket, curled hair, piercing and tattoos. Because Crawford is not a common scientist. He is Tom Rocks Maths, an alternative researcher and communicator who transforms boring formulas into fascinating models that he applies to sports science, his second passion as a marathoner and a follower of Manchester United.

But, since all science is not exact, nor is Crawford a fortune teller, his predictions are based on data, taking into account all possible variables and, above all, on the highest probability of hitting. It is about getting ahead of the facts, of having all the necessary information to reduce errors and improve the records.

The mathematics of sport consist of “building models using data from the past to predict the future. When you don’t have them, you have to go to the field, contact the athletes and gather new information, ”explains Crawford in an interview with EL MUNDO after the talk he gave Tuesday in Madrid during the cycle of conferences ‘Mathematics in the Residence’, organized by ICMAT, the Student Residence and the Deputy Vice Presidency of Scientific Culture of the CSIC.

TomCrawford
Madrid, 12 de noviembre de 2019. El matemático Tom Crawford posa en la Residencia de Estudiantes antes de una conferencia. Foto: Antonio Heredia

Win or lose penalties

The countries that best know how to throw penalties are Uruguay, Germany, Argentina and Brazil. Spain is not good, not bad. We are 50% among this list of experts and 50% of the worst, Mexico. We share media with France and Ireland. But how a team is better than another is not a matter of tradition or genetics, but numbers.

The first thing is to know how the players have responded before to the penalties, their statistics of failures and successes. According to Crawford, in the case of the 2018 World Cup, while Iniesta had four hits of five shots, Koke had zero of one and Aspas 16 of 17. The great surprise could have been given by Thiago, a substitute with a full in hits, four of four.

There is also a way to measure their stress responses with glasses that observe the movements of the eye. Footballers who are not immuted by pressure keep their eyes fixed and the most distracted move them. Knowing this in advance could decide the choice of a coach to choose the most focused players on those decisive penalties of a World Cup. “Football clubs now have entire teams of mathematicians and scientists who analyze all this data,” says Crawford.

But math doesn’t end there. In a goal you can make as many measures as your imagination, as Archimedes, to find the radius that indicates the exact area where you should place the ball without being stopped by the goalkeeper. It is called an insurmountable area and it depends, among other things, on the distance the goalkeeper moves in the shortest possible time from his position in the center. It looks like this: r2-2r(a+b+R)+a2+b2-R2. “These calculations are going to help you but they don’t guarantee that the penalty is perfect. In fact, the goalkeeper may also have trained against these formulas, ” Crawford alerts.

Roberto Carlos, the king of the Magnus effect 

If penalties are a science, free kicks are not far behind. Defining its trajectory is one of Crawford’s favorite equations when the ball is given effect, as we have allways called it, which also has its scientific name: Magnus effect. “The ball that spins does not go in a straight line, because the rotation moves it to the side,” he said.

In this modality, for Crawford there is a master: Roberto Carlos, king of the Magnus effect in a match against France in 1997. It happened like this: he carefully placed the ball with his hands on the ground. He kicked. The ball passed over the barrier of players, turned in the air to the right, then to the left, hit a stick and entered as a stroke.

“I saw it when i was eight years old and I thought that it was impossible, that it was magic. But years later, using this equation to model Roberto Carlos’s shot, by entering the correct data (the speed of the ball, the distance to the door and the spin that applies to the ball) the formula accurately predicted that movement. It is still amazing. Although now I have an explanation that tells me that it did not break the barriers of physics.”

Marathon in less than two hours

In Tom Crawford’s mind there are not only favorite sport formulas but also graphics. And if there is one that drives him crazy it is the one that calculates, with a curve, when you will be able to run, with conventional methods, a marathon in less than 2 hours, something that it could happen between 2027 and 2035.

The record is owned by Kenyan Eliud Kipchoge, 2:01:39. He obtained it in Berlin in September 2018. In October of this year, the same athlete beat it at 1:59:40, but his feat was not accepted by the International Athletics Federation. “It has not been taken into account because they have broken the rules. As a new official mark, this record below two hours does not count, ”says Crawford.

How they did it? “Creating the perfect race,” says Crawford. And something else: a flat route in a straight line to go through the center of the track; a pair of shoes with carbon fiber that balances and saves 4% of energy; a tape on the leg with lumps (like golf balls) that create streams; a squad of escorts in V to cut the wind (called hares); a car that laser marks the ground so that these satellite corridors maintain the perfect position; a scanner that controls the muscle accumulation of carbohydrates and an enriched diet.

“Where you draw the line between what is due to the human element or an incredible shoe. What is the next? Putting rockets in our soles? ”Crawford wonders. We saw it in swimming a few years ago with high-tech swimsuits that reduce friction with water. They were even questioned for increasing buoyancy. With them, in some competitions 130 records were broken in just two years.

It is clear that mathematics helps to overcome tests and marks. However, in sports there are uncontrollable factors, such as the mental control of athletes, to disarm algorithms. “You can never add that factor to your models. You can never really predict a sport with total certainty. There are many unknown variables, ”reflects the English mathematician.

And, returning to the football game that we lost in 2018, would we have win if we knew the data in depth and having other players thrown the penalties that took us out of the World Cup? According to Crawford, we could have reduced the risk of losing, but this is something we will never know. What is highly certain is that their talks not only reinforce the devotion to sports, but also awake the mathematical vocation of the youngest students.

WordPress.com.

Up ↑