Climate Change will increase Turbulence on Flights

We’ve seen many recent extreme weather events – from mudslides in Columbia to flooding in Australia – which scientists say are a consequence of climate change; but it’s not just the weather that is affected. The Earth’s atmosphere is made up of several layers of air which all flow around each other in patterns known as jet streams and an increase in temperature will cause these to speed up. This is bad news for air passengers, including the 1 million people currently airborne at this very instant, because an increase in the speed of the jet streams will cause more turbulence making flying less comfortable and potentially more dangerous. I spoke to atmospheric scientist Paul Williams…

  • Climate change will cause a 59% increase in light turbulence, 94% increase in moderate turbulence, and 140%  increase in severe turbulence.
  • Turbulence is measured on a scale from 1 to 7 where 1 means light turbulence, 3 means moderate, 5 means severe, and 7 means extreme.
  • Light turbulence is a slight strain against the seat belt, moderate turbulence causes unsecured objects to become dislodged and makes walking around difficult, and severe turbulence results in anything that isn’t strapped down being catapulted around the cabin.
  • Turbulence is caused by wind shear – the higher you go up into the atmosphere the windier it gets – and instabilities within these layers of shear generate turbulence.
  • As the atmosphere is heated, the temperature increase causes the jet streams to move faster, creating more wind shear and thus more turbulence.
  • The researchers hope that results such as this will encourage us to think more carefully about our carbon footprint as there are likely many effects of Climate Change that we do not know about.

You can listen to the full interview for the Naked Scientists here.

Size matters when it comes to speed

How fast should an animal be able to move? And why are the biggest animals, which pack more muscle, not the fastest? That’s what Yale scientist Walter Jetz was wondering, so he and his colleagues looked at hundreds of animal species and have come up with a new theory that successfully puts a speed limit on most species…

  • There is a theoretical maximum speed that is expected to increase with body size,  however, in order to actually get to any speed you need to first accelerate, and larger animals take much longer to do so – much like a truck accelerating to 60mph compared to a motorbike or car.
  • Large bodied animals simply do not have sufficient energy to reach their theoretical maximum speed.
  • The general distribution is a ‘hump-shape’ as shown in the plots below. Maximum speed increases with size until we reach a critical mass beyond which the maximum speed reached starts to decrease.

screen shot 2019-01-24 at 10.59.30

  • Data for over 450 species were included in the study, across land, air and water.
  • The study provides insight into evolutionary trade-offs for different species as they evolve to increase their chances of survival.

You can listen to the full interview with the Naked Scientists here.

Image copyright Dawn Key


Why do Bees Build Hexagons? Honeycomb Conjecture explained by Thomas Hales

Mathematician Thomas Hales explains the Honeycomb Conjecture in the context of bees. Hales proved that the hexagon tiling (hexagonal honeycomb) is the most efficient way to maximise area whilst minimising perimeter.

Produced by Tom Rocks Maths intern Joe Double, with assistance from Tom Crawford. Thanks to the Oxford University Society East Kent Branch for funding the placement and to the Isaac Newton Institute for arranging the interview.

Would Alien (Non-Euclidean) Geometry Break Our Brains?

The author H. P. Lovecraft often described his fictional alien worlds as having ‘Non-Euclidean Geometry’, but what exactly is this? And would it really break our brains?


Produced by Tom Rocks Maths intern Joe Double, with assistance from Tom Crawford. Thanks to the Oxford University Society East Kent Branch for funding the placement.

Tom Crawford, and Rockin’ Maths Matters

Esther Lafferty meets Dr Tom Crawford in the surprisingly large and leafy grounds of St Hugh’s College Oxford as the leaves begin to fall from the trees. It’s a far cry from the northern town of Warrington where he grew up.

Tom is a lecturer in maths at St Hugh’s, where, defying all ‘mathematics lecturer’ stereotypes with his football fanaticism, piercings, tattoos, and wannabe rock musician attitude, he makes maths understandable, relevant and fun.

‘It was always maths that kept me captivated,’ he explains, ‘ever since I was seven or eight. I remember clearly a moment in school where we’d been taught long multiplication and set a series of questions in the textbook: I did them all and then kept going right to the end of the book because I was enjoying it so much! It was a bit of a surprise to my teacher because I could be naughty in class during other subjects, messing around once I’d finished whatever task we’d been set, but I’ve loved numbers for as long as I can remember and I still find the same satisfaction in them now. There’s such a clarity with numbers – there’s a right or else it’s wrong. In English or History you can write an essay packed with opinion and interpretation and however fascinating it might be, there are lots of grey areas, whereas maths is very black and white. I like that.’

‘My parents both left school at sixteen for various reasons but they appreciated the value of education. My mum worked in a bank so she perhaps had an underlying interest in numbers but it wasn’t something I was aware of. I went to the local school and was lucky enough to be one of the clever children but it wasn’t until I got my GCSE results [10 A*s] that the idea of Oxford or Cambridge was suggested to me. I would never have thought to consider it otherwise.

‘I remember coming down for an interview in Oxford, at St John’s, arriving late on a Sunday night and the following morning I took a stroll around the college grounds  – I could feel the history and traditions in the old buildings and it was awesome. I really wanted to be part of everything it represented. I thought it would be so cool to study here so I was very excited when I was offered a place to read maths.

‘Studying in Oxford I found I was most interested in applied maths, the maths that underpins physics and engineering for example. ‘Pure’ maths can be very abstract whereas I prefer to be able to visualise the problems I am trying to solve and then when you work out the answer, there’s a sudden feeling when you just know it’s right.’

In his second year, Tom became interested in outreach work, volunteering to take the excitement of maths into secondary schools under the tutelage of Prof Marcus Du Sautoy OBE as one of Marcus’s Marvellous Mathematicians (or M3), a group who work to increase the public understanding of science.

‘I went to China one summer to teach sixth formers and it was great to have the freedom to talk about so many different topics. I spent another summer in an actuary’s office because I was told that was the way to make real money out of maths – it was a starkly different experience. I realised I was not at all cut out for a suit and a screen!’ Tom smiles. ‘I am a real people-person and get a real buzz from showing everyone and anyone that you can enjoy maths, and that it is interesting and relevant. I love the subject so much and I think numbers get a bad press for being dull and difficult and yet they underpin pretty much everything in the whole universe. They can explain almost everything and you’ll find maths in topics from the weather to the dinosaurs.

Take something like the circus for example – hula-hoops spinning and circles in the ring, and then the trapeze is all about trigonometry: the lengths and angles of the triangle. Those sequinned trapeze artists are working out the distances and directions they need to leap as they traverse between trapezes and its maths that stops them plummeting to the floor!’

Having spent four years in Oxford Tom then spent five years at Cambridge University looking at the flow of river water when it enters the sea, researching the fluid dynamics of air, ice and water, and conducting fieldwork in the Antarctic confined to a boat for six weeks taking various measurements in sub-zero temperatures. You’d never expect a mathematician to be storm-chasing force 11 gales in a furry-hooded parka, but to get the data needed to help to improve our predictions of climate change, that was what had to be done!

Tom also spent a year as part of a production group known as the Naked Scientists, a team of scientists, doctors and communicators whose passion is to help the general public to understand and engage with the worlds of science, technology and medicine. The skills he obtained allowed him to kick-start his own maths communication programme Tom Rocks Maths, where he brings his own enthusiasm and inspiring ideas to a new generation alongside his lectureship in maths at St Hugh’s.

A keen footballer (and a massive Manchester United fan) it’s no surprise Tom has turned his thoughts to football and as part of IF Oxford, the science and ideas festival taking over Oxford city centre in October, Tom is presenting a free interactive talk (recommend for age twelve and over) on Maths versus Sport – covering how do you take the perfect penalty kick? What is the limit of human endurance – can we predict the fastest marathon time that will ever be achieved? And over a 2km race in a rowing eight, does the rotation of the earth really make a difference? Expect to be surprised by the answers.

Esther Lafferty, OX Magazine

The original article can be found here.

Tom Rocks Maths S02 E02

The second episode of season 2 of Tom Rocks Maths on Oxide Radio – Oxford University’s student radio station. Featuring the numbers behind the sub 2-hour marathon world record attempt, P versus NP and the battle for control of the world, and the usual dose of Funbers with my super sweet 16. Plus, music from Blink 182, Billy Talent and Hollywood Undead. This is maths, but not as you know it…

Up ↑