Next month (March 2019) I will be hosting the ‘Carnival of Mathematics’ – a monthly blogging round up hosted by a different blog each month and organised by the Aperiodical.

The Carnival of Mathematics accepts any mathematics-related blog posts, YouTube videos or other online content posted during the previous month (February 2019): explanations of serious mathematics, puzzles, writing about mathematics education, mathematical anecdotes, refutations of bad mathematics, applications, reviews, etc. Sufficiently mathematized portions of other disciplines are also acceptable. Links to the previous monthly posts and a FAQ section can be found on the Aperiodical website here.

The deadline to submit your posts will be the 1st March 2019.

How fast should an animal be able to move? And why are the biggest animals, which pack more muscle, not the fastest? That’s what Yale scientist Walter Jetz was wondering, so he and his colleagues looked at hundreds of animal species and have come up with a new theory that successfully puts a speed limit on most species…

There is a theoretical maximum speed that is expected to increase with body size, however, in order to actually get to any speed you need to first accelerate, and larger animals take much longer to do so – much like a truck accelerating to 60mph compared to a motorbike or car.

Large bodied animals simply do not have sufficient energy to reach their theoretical maximum speed.

The general distribution is a ‘hump-shape’ as shown in the plots below. Maximum speed increases with size until we reach a critical mass beyond which the maximum speed reached starts to decrease.

Data for over 450 species were included in the study, across land, air and water.

The study provides insight into evolutionary trade-offs for different species as they evolve to increase their chances of survival.

You can listen to the full interview with the Naked Scientists here.

I was interviewed by Autumn Neagle at Science Oxford about my toga-clad exploits in FameLab and the meaning of my maths-based tattoos… You can read the full article here.

What did you enjoy most about the FameLab experience?

“I’d been aware of FameLab for a few years, but I’d never entered because I thought that you had to talk about your own research – and with mine being lab-based I didn’t think it would translate very well to the live element of the show. But, once I found out that I could talk about anything within the subject of maths then it was a whole different ball game and I just had to give it a go. I think my favourite part was actually coming up with the talks themselves, just sitting down and brainstorming the ideas was such a fun process.”

What did you learn about yourself?

“The main takeaway for me was the importance of keeping to time. I knew beforehand that I was not the best at ‘following the rules’ and I think that both of my FameLab talks really demonstrated that as I never actually managed to get to the end of my talk! This was despite practicing several times beforehand and coming in sometimes up to 30 seconds short of the 3-minute limit – I think once I’m on stage I get carried away and just don’t want to come off!”

What about post-FameLab – how has taking part made a difference?

“Well, I certainly now appreciate the comfort and flexibility of wearing a toga that’s for sure! But on a more serious note, I think the experience of being on stage in front of a live audience really is invaluable when it comes to ‘performing maths’ – and I say ‘performing’ because that’s now how I see it. Before I would be giving a lecture or a talk about maths, but now it’s a full-on choreographed performance, and I think taking part in FameLab really helped me to understand that.

Any tips for future contestants?

“It has to be the time thing doesn’t it! I think everyone knows to practice beforehand to ensure they can get all of the material across in the 3-minutes, but for me that wasn’t enough. I’d suggest doing the actual performance in front of a group of friends or colleagues because – if they’re anything like me – then the adrenaline rush of being on stage changes even the best rehearsed routines and you can only get that from the live audience experience.”

What are you up to now/next?

“I’ve actually just received an award from the University of Oxford for my outreach work which is of course fantastic but also completely unexpected! I really do just love talking to people about maths and getting everyone to love it as much as I do, so the plan is very much to keep Tom Rocks Maths going and to hopefully expand into television… I have a few things in the pipeline so watch this space.”

Are all of your tattoos science inspired and if so what’s next?

“Now that I’ve reached the dizzy heights of 32 tattoos I can’t say that they are all based on science or maths, but it’s definitely still one of the dominant themes. So far I’ve got my favourite equation – Navier-Stokes, my favourite shapes – the Platonic Solids, and my favourite number – e. Next, I’m thinking of something related to the Normal Distribution – it’s such a powerful tool and the symmetry of the equation and the graph is beautiful – but I’ve yet to figure out exactly what that’s going to look like. If anyone has any suggestions though do let me know! @tomrocksmaths on social media – perhaps we can even turn it into a competition: pick Tom’s next tattoo, what do you think?”

In your YouTube video’s #EquationsStripped you reveal the maths behind some of the most important equations in maths, and I noticed that you describe the Navier-Stokes equations as your favourite – why is that and perhaps most importantly can you solve them?

“My favourite equations are the Navier-Stokes equations, which model the flow of every fluid on Earth… Can I solve them? Not a chance! They’re incredibly complicated, which is exactly why they’re a Millennium Problem with a million-dollar prize, and my idea with the video and live talk is to try to peel back the layers of complexity and explain what’s going on in as simple terms as possible.”

Does that mean that anyone can follow your video?

“The early parts yes absolutely, I purposefully start with the easier bits – the history, the applications, and then gradually get more involved with the physical setup of the problem and finally of course the maths of it all… And that’s pretty much where the idea to ‘strip back’ the equations came from – I thought to myself let’s begin simple and then slowly increase the difficulty until the equation is completely exposed. Being the ‘Naked Mathematician’ the next move was pretty obvious… as each layer of the equation is stripped back, I’m also stripping myself back until I’m just in my underwear – so almost completely exposed but not quite!”

Where did the whole idea of ‘stripping’ equations come from?

“I suppose I don’t really see it as ‘stripping’ per se, it’s there for comedic effect and really to show that maths is not the serious, boring, straight-laced subject that unfortunately most people think it is. Stripping for the videos is fine – it’s just me alone with my camera, but then earlier this year I was asked to give a live talk for the Oxford Invariants Society and they were very keen to emphasise that they wanted to see the Naked Mathematician in the flesh – quite literally!”

And how did it go?

“Well, barring some slightly awkward ‘costume changes’ between the layers of the equation – I went outside for the final reveal down to my underwear for example – it was good fun and definitely something I’d be keen to try out again… Perhaps maybe even an Equations Stripped Roadshow. I’m keen to try out anything that helps to improve the image that people have of maths.”

Interview with the University of Oxford’s Blueprint magazine about my mission to popularise maths and my outreach work with the St John’s Inspire Programme. The full interview with Blueprint’s Shaunna Latchman can be found in the online magazine here.

While some avoid arithmetic at all costs, Tom fully immerses himself daily teaching maths to the first and second year undergraduate students at St Hugh’s College. He also arranges activities for St John’s College as the Access and Outreach Associate for Science, Technology, Engineering and Maths (STEM) for the Inspire programme. Another activity is planning and filming content for his own outreach programme – Tom Rocks Maths.

‘It was the subject that felt most natural to me’, explains Tom, who first realised his love for numbers aged seven when his class had been set ten long multiplication questions. He raced through the whole book. However it wasn’t until he received ten A*s in his GCSEs that he began considering an Oxbridge education. ‘Academically there isn’t much of a difference [between Oxford and Cambridge]’ Tom comments, ‘but Oxford felt more like home.’

Later, after completing his PhD in Applied Maths at Cambridge, he was offered an internship with public engagement team, the Naked Scientists. The group strip back science to help make a complicated theory easy to digest. Weekly podcasts are broadcasted through BBC Radio 5 Live and ABC Australia, where audiences reach up to one million listeners a week.

Tom saw an opportunity to bring his appreciation for maths to the masses, but he wanted to do it with a twist. Eager to move away from the stereotypes of maths being a serious subject taught by older men in tweed jackets, he thought ‘what is the best way to make maths less serious? Doing it in my underwear!’ And so, the Naked Mathematician was born.

Since joining St Hugh’s, Tom continues to break down day-to-day activities on his YouTube channel to prove that maths is an integral part of everything we do.

His passion for engagement doesn’t end there. The Inspire programme, part of the Link Colleges initiative, is a series of events, visits, workshops and online contact for pupils in years 9 to 13. Tom works with the non-selective state schools in the London boroughs of Harrow and Ealing.

The Link Colleges programme simplifies communication between UK schools and the University. Every school in the country is linked with an Oxford college, with the hope that this connection will encourage students to explore the possibility of attending university.

‘The aim is to have sustained contact with the same group of students over five years,’ says Tom. ‘There are still students who haven’t thought about university, or maybe it’s not the norm in their family or area to attend university. So, we explain what it is, how it works and the positives and negatives. We want to inform and inspire them.’

Tom is responsible for arranging all STEM events across the year for 60 students in each year group. He calls on the expertise of his colleagues at Oxford as well as encouraging a partnership with the University of Cambridge and several universities in London. ‘The syllabus includes various topics such as the science of food and using maths to improve diet.’

During Tom’s famed Maths vs Sport talk, students are encouraged to participate in an on-stage penalty shootout – but only after learning about the mathematical makeup behind such a pivotal moment in a football game, of course.

Tom believes maths is made more accessible by relating it the world around us. He encourages his students to question things, like why bees make hexagonal shapes in their hives and how many Pikachus it takes to light up a lightbulb.

Whether visiting schools up and down the country to deliver talks, recording the weekly dose of Funbers for BBC radio – fun facts about numbers that we didn’t realise we secretly wanted to know – or in front of his class of students, Tom is certainly making waves in the world of maths.

The second live episode of Tom Rocks Maths on Oxide Radio – Oxford University’s student radio station. Featuring aliens, death by duel, Indiana Jones and the weekly maths puzzle for you to solve. Plus music from Rise Against, Good Charlotte and Asking Alexandria…

Starting from my love of multiplication questions at primary school, I talk about my new role as a maths tutor at the University of Oxford, what a typical day looks like for the Naked Mathematician and give a sneak preview of my upcoming talk at New Scientist Live later this year… Live interview with BBC Radio Cambridgeshire.

Stripping back the most important equations in maths so that everyone can understand…

Logarithms turn multiplications (hard) into additions (much easier) which enabled scientists in the 1600’s to calculate the trajectories of comets and the orbits of the planets around the sun. Nowadays, they are mainly used in Information Theory and Thermodynamics, but still have an important role to play mathematically in helping us to understand trends in experimental data.