La Redada Podcast Interview

I was recently interviewed by Lucia Taboada for La Redada Podcast about my love of maths and how it is used in today’s world to model everything from penalty kicks to the next TV series you watch on Netflix. The interview was translated into Spanish for the actual podcast so I’ve also included the original recording of my answers in English – enjoy!

Podcast version

La Redada T08 E29: Tom Crawford the Naked Mathematician


  1. On your YouTube channel, you present science in an entertaining way. Why is maths so unpopular sometimes, maybe students are afraid of maths?
  2. How would you define the importance of mathematics in our life?
  3. Tom, I’m a huge supporter of a Spanish team called Celta de Vigo. You explain the possibilities using maths to improve the performance of football players. How can Celta de Vigo use this to improve? (unfortunately, we are now in the last positions)
  4. Penalty kicks are a science? Can you predict them?
  5. Have you been hired by any football team?
  6. Do you think football teams should hire math workers?
  7. You are a tutor in St John’s College at the University of Oxford where you teach maths to the first and second year undergraduates. Oxford is a traditional university – how are your methods received there?
  8. You have some maths tattoos on your body, thats right? Explain them to us?

English (unedited) version

Image: Residencia de Estudiantes

Maths with a Striptease (Die Rheinpfalz)

Tom “rocks” maths on the internet – lecturer from Oxford arouses enthusiasm with crazy ideas… 

The graduate mathematician Tom Crawford not only has rock music as a hobby, but he also looks like a rock star with his tattoos and piercings. However, some of his tattoos are related to mathematics. For example, the first 100 decimal places of Euler’s number wind around his arm and the number pi has been encrypted as an infinite series. On his Youtube channel “Tom Rocks Maths” he presents science in a fun way – the clothes sometimes fly during a striptease: “I want to show that maths is not always only downright serious, but fun.”

The math lecturer from Oxford came as part of the Heidelberg Laureate Forum (HLF) in the Electoral Palatinate. Since there is no Nobel Prize in mathematics, the winners (Latin: laureates) of comparable awards are invited to the HLF. The best math and computer scientists in the world meet here for a week with junior scientists and journalists. Crawford was on the ground as a publicist and presenter, and took the opportunity to speak to some of the awardees. For example, Martin Hairer, who received the Fields Medal for his seminal studies, had an appointment for an interview. In the end, they played Tetris for an hour and talked about “cool math”: “Such a relaxed and profound conversation is only possible at the Heidelberg Laureate Forum,” the Brit enthuses about the inspiring atmosphere at the HLF.


Tom Crawford was already “packed” in the elementary school of mathematics: “When we were learning multiplication, I did not want to stop working on difficult tasks until late in the evening – it did not feel like work at all.” Even later in high school, he always did math tasks first and gladly. “I was a good student in my eleven subjects, but math was the most fun.” The satisfying thing is, “in maths a result is right or wrong, there is no need to discuss it.”

After studying in Oxford, he went to Cambridge to write his PhD in fascinating  fluid dynamics. “We wanted to model how fluids move and interact with the world. I was excited about the prospect of being able to analyse experiments as a mathematician.” From this, models of reality were developed: what path does a river take when it flows into the sea? The findings help to understand the pollution of the oceans and possibly stop it. During his PhD he worked for the BBC in the science programme “The Naked Scientists”: this meant that the scientists liberated their theories from the complicated “clothes” and reduced them to a comprehensible basis. In this way, a layman will discover “naked” facts – in the sense of comprehensible ones. The radio broadcasts were a great success.”But you also have to visualize maths,” so he started to make his own videos and took the concept of the “naked mathematician” literally. In some lectures, he reveals the equations “layer by layer” and in each stage falls a garment – until Tom remains only in his boxer shorts. And then his tattoos are also visible, on whose mathematical background he will give a lecture in Oxford soon – with many guests guaranteed!

With unusual ideas, the only 29-year-old mathematician arouses the desire and curiosity for his subject. His original internet activities have now been honoured with an innovation prize. Even when attending school in Schwetzingen Tom Crawford had unusual questions: “In the stomach of a blue whale 30 kilos of plastic have been found: How much would that be if a person swallows just as much in relation to their own body weight?” The students calculated that in the human stomach, six (empty) plastic shopping bags would be located. Or, “How many table tennis balls are needed to lift the sunken Titanic off the ground?” And which example impressed him most in mathematics? “It is terrific how Maxwell’s equations, which deal first with electricity and magnetism, follow the wave property of light with the help of mathematics alone. Math is just fantastic! ”

Birgit Schillinger

The original article published in the Die Rheinpfalz newspaper (in German) is available here.

From aliens to bees via tattoos…

A short review of intern Joe Double’s work with Tom Rocks Maths over the summer of 2018. Written for the OUS East Kent branch who provided funding for the project. 

‘First of all, I must thank you again for the grant, and for the warmth and friendliness at your event; it was an absolute delight to give my presentation and talk to your members, as it has been interacting with you in general.

I had the opportunity to work with one of my tutors over the summer to produce pieces for a general audience about complex mathematical topics. Without the help of the OUS East Kent group, I couldn’t have taken up this opportunity – with their grant’s help, I was able to afford to live in Oxford through a large part of the summer, allowing me to work in close contact with my tutor and use his studio for creating the videos and audio pieces I worked on. The OUSEK grant can be put to use far more flexibly than those from bigger schemes (which always have preconditions to meet about how the project will apply to industry, say), so I couldn’t recommend applying more if you have an idea for a project for your time at Oxford which is on the unusual side!’

Pieces I produced during the project:

Why do Bees Build Hexagons? Honeycomb Conjecture explained by Thomas Hales

A video I edited of Tom (my tutor) interviewing Thomas Hales about the mathematics behind beehives.

Would Alien (Non-Euclidean) Geometry Break Our Brains?

My main video, written, filmed and edited by me, about demystifying non-Euclidean geometry.

Take me to your chalkboard

My main audio piece, where I interview Professor Adrian Moore (also of St Hugh’s) about what philosophy can tell us about how aliens might do maths.

Maths proves that maths isn’t boring

An article about Gödel’s incompleteness theorems, and how they show maths is always risky.

Getting tattooed for science…

An audio piece I edited about a tattoo Tom got of the Platonic solids.

Alien maths – we’re counting on it

An article about how we use the mathematics of prime numbers to send messages to the stars.

Play Nice!

An article about a game theory paper which could amongst other things help stop deforestation.

The original article was published on the OUS East Kent website here.

Getting tattooed for science…

Listen to me being tattooed whilst attempting to describe the process, and hear from my artist Nat on his experience as a tattooist…. all in the name of science.

You can also watch a short video below of the tattoo being done from the perspective of the artist.

Audio edited by Joe Double.

Funbers 1.618…, 2 and e

The fun facts about numbers that you didn’t realise you’ve always wanted to know…


Why are some things nice to look at and others simply aren’t? Notre Dame Cathedral, the Great Pyramids, the Parthenon, Leonardo Da Vinci’s Last Supper… All great to look at and all created with the Golden Ratio. It’s a number, like any other, but the way it’s formed is what makes it so special. You take a straight line and then divide it up with the following rule: the short part and long part must be in the same ratio as the long part and the whole line. It sounds more complicated than it is. Let’s have a go…

Screen Shot 2017-05-02 at 22.37.47

If we chop the line at the dot we divide it into two parts and we have three different lengths of line. The original line has length A, the short part B and the long part C. To get the golden ratio we must have B/C = C/A. Solving this with a little bit of maths (put A = 1 as it’s the original line and then you have two simultaneous equations with B + C = 1) tells us that we have to put the dot 0.618… along the original line – so just under two thirds of the way along. Now the clever part is that if you add the length of the long part 0.618… to the original length 1, you get 1.618… aka the Golden Ratio. It pops up everywhere in nature from sunflower petals to the spiral of a shell. It is even credited with the correct facial proportions that make people attractive.

2 – TWO

Double double toil and trouble… even Shakespeare loved the number two and he knows a thing (or two) about language. Two is a powerful number: it can mean two opposites or two partners. Friends and enemies, light and dark, good and evil – we like pairs. It’s also a really important number in maths. It’s the first even number, and we actually define even numbers as the ones that can be divided by two. It’s also the first prime number and the only one that is even. Remember, a prime number is one that has only two factors: itself and 1 – nothing else multiplies together to make it. So for 2, we have 1 x 2 = 2 and that’s it. For any other even number, say 4, we can divide it by 2, so 2 x 2 = 4. This means that 4 has three factors: 1, 4 and 2. So it’s not prime.

2.7182… – e

Euler’s number and also my favourite number – like the Navier-Stokes equations, when you have a tattoo of something it kind of has to be your favourite. It pops up anytime you start doing calculations with growth and growth rates. For example, let’s talk money. Suppose you have £1 and I give you two options for investment: I’ll either give you 1/12th interest every month for 1 year or I’ll give you 1/365th interest every day for 1 year. Which do you take?

It’s kind of a trick question because we can of course do the maths and see which is best… £1 after one month is worth £1 x (1 + 1/12) = £1.08. After two months we have £1.08 x (1 + 1/12) = £1.17, after three months we’re at £1.17 x (1 + 1/12) = £1.27 and so on. After one year our grand total is £2.61, not bad! Now what about the second option, well after one day we have £1 + 1/365 = £1 (plus a tiny bit). After one month (30 days) we have £1.09, so actually one penny more than option one. And after a whole year we have £2.71, so an extra 10p! So the pattern seems to be that the more often we are paid interest (despite it being a lower percent), the more money we get. What about if we are paid every hour? Well that’s 24 x 365 = 8760 hours in a year, at a rate of interest of 1/8760th per hour. The grand total for the year gives us £2.71, the same as before. Huh? Why didn’t it increase? The answer is it actually did, but you can’t have part of a penny.

What’s actually going on here is that we are calculating the number e to higher and higher levels of accuracy. We’ve been working out the answer to (1 + 1/n)n for n = 12, 365 and 8760. If we let n go to infinity then we get the exact value of e. Amazing, right? Probably so amazing you just want to get the first 100 digits of the number tattooed in a spiral around your arm…

You can find all of the funbers articles here and all of the episodes from the series with BBC Radio Cambridgeshire and BBC Radio Oxford here.

Up ↑