From aliens to bees via tattoos…

A short review of intern Joe Double’s work with Tom Rocks Maths over the summer of 2018. Written for the OUS East Kent branch who provided funding for the project. 

‘First of all, I must thank you again for the grant, and for the warmth and friendliness at your event; it was an absolute delight to give my presentation and talk to your members, as it has been interacting with you in general.

I had the opportunity to work with one of my tutors over the summer to produce pieces for a general audience about complex mathematical topics. Without the help of the OUS East Kent group, I couldn’t have taken up this opportunity – with their grant’s help, I was able to afford to live in Oxford through a large part of the summer, allowing me to work in close contact with my tutor and use his studio for creating the videos and audio pieces I worked on. The OUSEK grant can be put to use far more flexibly than those from bigger schemes (which always have preconditions to meet about how the project will apply to industry, say), so I couldn’t recommend applying more if you have an idea for a project for your time at Oxford which is on the unusual side!’

Pieces I produced during the project:

Why do Bees Build Hexagons? Honeycomb Conjecture explained by Thomas Hales

A video I edited of Tom (my tutor) interviewing Thomas Hales about the mathematics behind beehives.

Would Alien (Non-Euclidean) Geometry Break Our Brains?

My main video, written, filmed and edited by me, about demystifying non-Euclidean geometry.

Take me to your chalkboard

My main audio piece, where I interview Professor Adrian Moore (also of St Hugh’s) about what philosophy can tell us about how aliens might do maths.

Maths proves that maths isn’t boring

An article about Gödel’s incompleteness theorems, and how they show maths is always risky.

Getting tattooed for science…

An audio piece I edited about a tattoo Tom got of the Platonic solids.

Alien maths – we’re counting on it

An article about how we use the mathematics of prime numbers to send messages to the stars.

Play Nice!

An article about a game theory paper which could amongst other things help stop deforestation.

The original article was published on the OUS East Kent website here.

Maths, but not as you know it… (St Hugh’s College Oxford Magazine)

In October 2017, Dr Tom Crawford joined St Hugh’s as a Lecturer in Mathematics. He has since launched his own award-winning outreach programme via his website tomrocksmaths.com and in the process became a household name across Oxford University as the ‘Naked Mathematician’. Here, Tom looks back on the past year…

headshot-cropped

I arrived at St Hugh’s not really knowing what I was getting into to be completely honest. I’d left a stable and very enjoyable job as a science journalist working with the BBC, to take a leap into the unknown and go it alone in the world of maths communication and outreach. The plan was for the Lectureship at St Hugh’s to provide a monthly salary, whilst I attempted to do my best to make everyone love maths as much as I do. A fool’s errand perhaps to some, but one that I now realise I was born to do.

The ‘Naked Mathematician’ idea came out of my time with the Naked Scientists – a production company that specialises in broadcasting science news internationally via the radio and podcasts. The idea of the name was that we were stripping back science to the basics to make it easier to understand – much like Jamie Oliver and his ‘Naked Chef’ persona. Being predominantly a radio programme, it was relatively easy to leave the rest up to the listener’s imagination, but as I transitioned into video I realised that I could no longer hide behind suggestion and implication. If I was going to stick with the ‘Naked’ idea, it would have to be for real.

Naked-Mathematician

Fortunately, the more I thought about it, the more it made sense. Here I was, trying to take on the stereotype of maths as a boring, dreary, serious subject and I thought to myself ‘what’s the best way to make something less serious? Do it in your underwear of course!’ And so, the Naked Mathematician was born.

At the time of writing, the ‘Equations Stripped’ series has received over 100,000 views – that’s 100,000 people who have listened to some maths that they perhaps otherwise wouldn’t have, if it was presented in the usual lecture style. For me that’s a huge victory.

Video-image-2

Of course, not all of my outreach work involves taking my clothes off – I’m not sure I’d be allowed in any schools for one! I also answer questions sent in by the viewers at home. The idea behind this is very simple: people send their questions in to me @tomrocksmaths and I select my favourite three which are then put to a vote on social media. The question with the most votes is the one that I answer in my next video. So far, we’ve had everything from ‘how many ping-pong balls would it take to raise the Titanic from the ocean floor?’ and ‘what is the best way to win at Monopoly?’ to much more mathematical themed questions such as ‘what is the Gamma Function?’ and ‘what are the most basic mathematical axioms?’ (I’ve included a few of the other votes below for you to have a guess at which question you think might have won – answers at the bottom.)

The key idea behind this project is that by allowing the audience to become a part of the process, they will hopefully feel more affinity to the subject, and ultimately take a greater interest in the video and the mathematical content that it contains. I’ve seen numerous examples of students sharing the vote with their friends to try to ensure that their question wins; or sharing the final video proud that they were the one who submitted the winning question. By generating passion, excitement and enthusiasm for the subject of maths, I hope to be able to improve its image in society, and I believe that small victories, such as a student sharing a maths-based post on social media, provide the first steps along the path towards achieving this goal.

Speaking of goals, I have to talk about ‘Maths v Sport’. It is by far the most popular of all of my talks, having featured this past year at the Cambridge Science Festival, the Oxford Maths Festival and the upcoming New Scientist Live event in September. It even resulted in me landing a role as the Daily Mirror’s ‘penalty kick expert’ when I was asked to analyse the England football team’s penalty shootout victory over Colombia in the last 16 of the World Cup! Most of the success of a penalty kick comes down to placement of the shot, with an 80% of a goal when aiming for the ‘unsaveable zone’, compared to only a 50% chance of success when aiming elsewhere.

unsaveable-zone
Image courtesy of Ken Bray

In Maths v Sport I talk about three of my favourite sports – football, running and rowing – and the maths that we can use to analyse them. Can we predict where a free-kick will go before it’s taken? What is the fastest a human being can ever hope to run a marathon? Where is the best place in the world to attempt to break a rowing world record? Maths has all of the answers and some of them might just surprise you…

Another talk that has proved to be very popular is on the topic of ‘Ancient Greek Mathematicians’, which in true Tom Rocks Maths style involves a toga costume. The toga became infamous during the FameLab competition earlier this year, with my victory in the Oxford heats featured in the Oxford Mail. The competition requires scientists to explain a topic in their subject to an audience in a pub, in only 3 minutes. My thinking was that if I tell a pub full of punters that I’m going to talk about maths they won’t want to listen, but if I show up in a toga and start telling stories of deceit and murder from Ancient Greece then maybe I’ll keep their attention! This became the basis of the Ancient Greek Mathematicians talk where I discuss my favourite shapes, tell the story of a mathematician thrown overboard from a ship for being too clever, and explain what caused Archimedes to get so excited that he ran naked through the streets.

toga

This summer has seen the expansion of the Tom Rocks Maths team with the addition of two undergraduate students as part of a summer research project in maths communication and outreach. St John’s undergraduate Kai Laddiman has been discussing machine learning and the problem of P vs NP using his background in computer science, while St Hugh’s maths and philosophy student Joe Double has been talking all things aliens whilst also telling us to play nice! Joe’s article in particular has proven to be real hit and was published by both Oxford Sparks and Science Oxford – well worth a read if you want to know how game theory can be used to help to reduce the problem of deforestation.

Looking forward to next year, I’m very excited to announce that the Funbers series with the BBC will be continuing. Now on its 25th episode, each week I take a look at a different number in more detail than anyone ever really should, to tell you everything you didn’t realise you’ve secretly always wanted to know about it. Highlights so far include Feigenbaum’s Constant and the fastest route into chaos, my favourite number ‘e’ and its link to finance, and the competition for the unluckiest number in the world between 8, 13 and 17.

The past year really has been quite the adventure and I can happily say I’ve enjoyed every minute of it. Everyone at St Hugh’s has been so welcoming and supportive of everything that I’m trying to do to make maths mainstream. I haven’t even mentioned my students who have been really fantastic and always happy to promote my work, and perhaps more importantly to tell me when things aren’t quite working!

OxTALENT

The year ended with a really big surprise (at least to me) when I was selected as a joint-winner in the Outreach and Widening Participation category at the OxTALENT awards for my work with Tom Rocks Maths, and I can honestly say that such recognition would not have been possible without the support I have received from the college. I arrived at St Hugh’s not really knowing what to expect, and I can now say that I’ve found myself a family.

You can find all of Tom’s outreach material on his website tomrocksmaths.com and you can follow all of his activities on social media via TwitterFacebook, YouTube and Instagram.

 

Answers to votes (watch by clicking the links):

  1. What is the probability I have the same PIN as someone else?
  2. How does modular arithmetic work?
  3. What would be the Earth’s gravitational field if it were hollow?
  4. What are grad, div and curl? COMING SOON

Getting tattooed for science…

Listen to me being tattooed whilst attempting to describe the process, and hear from my artist Nat on his experience as a tattooist…. all in the name of science.

You can also watch a short video below of the tattoo being done from the perspective of the artist.

Audio edited by Joe Double.

Ancient Greek Mathematicians

A new feature from Tom Rocks Maths – a weekly maths puzzle for you all to enjoy! Answers will be posted when the next puzzle is released so remember to check back and get your thinking hats on…

Below are portraits of three famous mathematicians from Ancient Greece. Your task is to give me the name of each of them along with one of their mathematical discoveries… Send your answers in on Facebook, Twitter, Instagram or via the contact form on my website. Good luck!

WARNING: answer below the picture so if you want to attempt the puzzle please scroll slowly to avoid revealing it!

Screen Shot 2018-05-16 at 11.52.18

Answer:

(a). Archimedes – most famous for running naked down the street exclaiming “Eureka!” after discovering what is now called Archimedes Principle. It relates the buoyancy of an object to the weight of water and allows you to easily work out whether or not something will float.

(b). Plato – involved with many things, but mathematically best known for his interest in shapes. The 5 Platonic Solids bear his name and are also my favourite shapes. Plato thought that they were so beautiful the entire universe must be built out of them…

(c). Pythagoras – perhaps the most famous mathematician to have ever lived due the triangle theorem named after him that we are all taught at school. It tells us that the length of the diagonal side of a right-angled triangle c is related to the length of the other two sides a, b by a very neat relationship a2 + b2 = c2.

Tom Rocks Maths Episode 04

The fourth and final episode of Tom Rocks Maths this term on Oxide – Oxford University’s student radio station. Featuring my favourite shapes, cannibals with a hat fetish, the golden ratio and the weekly maths puzzle for you to solve. Plus, music from Foo Fighters, Green Day and Sum 41…

Funbers 5

As well as being a hit(?) boyband from the 90’s, five is also a number. We have five human senses, five rings in the Olympic symbol and five Platonic Solids. These are my favourite shapes and were believed by the Ancient Greeks to be the building blocks of the universe…

You can listen to all of the Funbers episodes from BBC Radio Cambridgeshire and BBC Radio Oxford here.

Funbers 4.6692… 5 and 6

4.6692… – FEIGENBAUM’S CONSTANT 

A new addition to the list of important mathematical numbers, Feigenbaum’s constant was only discovered in 1978 through the study of chaotic systems. Chaos in the mathematical sense is pretty much what you might expect – it describes something that is completely unpredictable. My favourite way to think of it is using magnets. If you have two magnets each with a North and South pole (those funky blue and red ones from school) and hold opposite ends near to each other, then they are attracted and will quickly move together. This is a nice stable system – we know what will happen every time. And if you slightly adjust how far apart you put the magnets, or at what angle you hold them near to each other, it won’t make a difference; they will still join up. Now, what happens if you try and hold two of the same ends near to each other? Well, for starters they’re now going to repel. But, what’s important here is that they move around unpredictably. Try it. If you force them towards each other they push back and can end up moving sideways, up, down, pretty much in any direction. And if you try to repeat the same movement you can’t. That’s chaos.

So, what does Feigenbaum’s constant have to do with all of this? The answer lies in fractals — a repeating pattern that continues to look the same despite zooming in further and further (see image below). The rate at which the image zooms in is Feigenbaum’s constant — cool, huh?

Mandelbrot_zoom

Feigenbaum’s constant is important because it describes the rate at which the simplest mathematical systems (called one-dimensional maps) descend into chaos. The really awesome thing is that you can create all kinds of different systems (following a few basic rules) and they will all go into chaos at the same rate given by this exact constant.

5 – FIVE

Apart from being a hit(?) boyband from the 90’s, five is also a number. It has the fun quirk of being the fifth number in the Fibonacci sequence: 1, 1, 2, 3, 5… where the next number is the sum of the two before it. It’s also the number of human senses (or at least the main ones) and the number of rings in the Olympic symbol. My favourite use of five, however, has to be the 5 Platonic Solids. These are the most, regular, symmetrical and beautiful shapes in all of maths – some people would say that they are so beautiful that they should be permanently inked onto your body… who are these crazy people? Hint: it’s me.

To be a Platonic Solid you need to be 3D, with each face the same shape, and at each corner the same number of faces must join together. Take the simplest example: the cube. We have 6 faces that are all squares and at each corner 3 squares join together. The smallest Platonic Solid is the Tetrahedron or triangle-based pyramid which has 4 faces that are all triangles. After the square comes the Octahedron which has 8 faces that are all triangles – basically two square-based pyramids stuck together so that the square face is inside the solid. The last two are the Dodecahedron with 12 pentagon-shaped sides and the Icosahedron which has 20 triangles all stuck together. These are the only 5 shapes that satisfy the very simple set of rules and they appear everywhere in nature, from the shape of viruses to the structure of molecules. In short, they’re grrrrreat (credit to Tony the Tiger).

6 – SIX

The number of impossible things that the Queen from Alice in Wonderland believes before breakfast and also the number of legs on every insect on earth. Insects are in fact the largest group of species we have on the planet, and even outnumber all of the other species combined… We also have 6 Quarks, which as well as being some of the fundamental particles that make up our universe, have the fantastic names of up, down, bottom, top, charm and strange. Sounds like a fun weekend…

Mathematically, six is what we call a perfect number: all of its factors (the numbers that divide it) add up to give six 1 + 2 + 3 = 6. It also happens to be the only number in existence where not only do all of its factors add up to give the number, they also all multiply together to give the number too: 1 x 2 x 3 = 6. Perfect numbers (the ones that equal the sum of their factors) are a little more common, the next three are: 28, 496, 8128. There are more of course, but they get a little tricky to find. Be my guest and see if you can work them out… sounds like another fun weekend to me.

You can find all of the funbers articles here and all of the episodes from the series with BBC Radio Cambridgeshire and BBC Radio Oxford here.

WordPress.com.

Up ↑