Oxford Mathematician explains SIR Travelling Wave disease model for COVID-19 (Coronavirus)

The SIR model is one of the simplest ways to understand the spread of a disease such as COVID-19 (Coronavirus) through a population. Allowing the movement of populations makes the model slightly more realistic and results in ‘Travelling Wave’ solutions.

In this video, Oxford University Mathematician Dr Tom Crawford explains how including population migration modifies the original SIR model. He then goes on to use the results of the model to answer two important questions:

How fast will the disease spread?

How severe will the epidemic be?

The answers to these questions are discussed in the context of the current COVID-19 (Coronavirus) outbreak. The model tells us that to reduce the impact of the disease we need to lower the ‘contact ratio’ as much as possible – which is exactly what current social distancing measures are designed to do.

Watch the first video on the basic SIR model here.

Hi Shantanu – I’m afraid I don’t have any code files for the model, but I believe there is a Numberphile video talking through how to construct one on GeoGebra here: https://www.youtube.com/watch?v=k6nLfCbAzgo

Can you provide me mathlab code of sir model.

LikeLike

Hi Shantanu – I’m afraid I don’t have any code files for the model, but I believe there is a Numberphile video talking through how to construct one on GeoGebra here: https://www.youtube.com/watch?v=k6nLfCbAzgo

LikeLike

[…] Tom also looks at the effects of spatial dependence with a ‘Travelling Wave SIR Model’ here. […]

LikeLike